Air showers and cosmic rays through the eyes of digital radio telescopes

Anna Nelles University of California Irvine

LOFAR Key Science Project: Cosmic Rays

A. Bonardi, S. Buitink, A. Corstanje, H. Falcke, J.R. Hörandel, P. Mitra, K. Mulrey, J.P. Rachen, L. Rossetto, P. Schellart, O.Scholten, S. ter Veen, S. Thoudam, T.N.G. Trinh, T. Winchen

Cosmic rays and air showers

Radio emission of air showers

Electromagnetic component of shower responsible for radio emission

Emission arises from:

- e+ and e- are accelerated in geomagnetic field (geomagnetic effect)
- more e- than e+ in the shower by collecting e- from atmosphere (charge excess)

Emission is affected by:

- Superposition of emission
- Cherenkov effects
- 3 Anna Nelles, Science at Low Frequencies III, Pasadena, 2016

Traditional methods & radio detection

Air showers can be detected in many ways

 Particle detectors: 100% duty cycle little sensitivity to primary particle

 Cherenkov and Fluorescence detectors: 10% duty cycle and high quality observing conditions, sensitive to primary

 Radio detectors:
 > 95% duty cycle and sensitive to primary particle

Detection at radio telescopes

- Signals are short non-repeating broad-band pulses
- Need access to raw voltage data
- full frequency range: 10 300 MHz, about 50 nanoseconds
- Arrival times in antennas determined by shower arrival direction, source in atmosphere
- 5 Anna Nelles, Science at Low Frequencies III, Pasadena, 2016

Measuring composition

Measuring composition

Buitink et al., Phys. Rev D, 2014

- Fit quality of simulated pattern to measured data, determines most probable value for shower height
- LOFAR data is extremely precise, often better than 20 g/cm², which is current standard of field
- Detailed measurement of single shower only possible with radio
- Examples: Proton and Iron simulations

Measuring energy

- Radio emission also excellent in determining energy
- Fitted intensity pattern is directly proportional to energy of the shower
- Energy resolution better than particle detectors
- Very small systematic uncertainties

With energy and composition we can do Astrophysics

8 Anna Nelles, Science at Low Frequencies III, Pasadena, 2016

Astrophysical results

- Already with 100 showers, measurements competitive to other experiments in the field
- High precision measurements determine strong light component at transition energies of 10¹⁷ - 10¹⁸ eV

Astrophysical implications

- LOFAR results already now put tension on theories:
- Strong light component argues against single type of source of Galactic cosmic rays after the knee, which suppresses protons
- Strong light component, but not purely protons, argues against imprint of pair-productions
- More likely a second Galactic component, caused by for example Galactic-Wind or Wolf-Rayet stars

Thoudam et al, A&A 2016

Synergies in astrophysics

Detailed source observations

better understanding of propagation

Synergies in calibration methods

Cosmic ray measurement

- Single antenna, raw voltage data
- no beamforming
- no time-integration
- Very detailed understanding of individual antenna needed
- Time-dependent monitoring of single antenna performance
- Absolute calibration on artificial sources

Astronomical observation

- Combined antenna signals, visibilities
- beamformed
- time-integrated
- Detailed understanding of station-beam needed
- Time-dependent monitoring of array performance
- Absolute calibration on astronomical sources and sky models

Antenna calibration

Anna Nelles, Science at Low Frequencies III, Pasadena, 2016 13

RFI cleaning

- In raw voltage data: A stable phase difference between two-antenna pairs reveals RFI transmitter
- Data can be recorded and flagged offline
- Better accuracy than baseline fitting and continuous monitoring of RFI environment

 Phase difference also reveal timing stability of system

14 Anna Nelles, Science at Low Frequencies III, Pasadena, 2016

Timing calibration

- Monitoring of phase differences shows that also LOFAR clock shows small drifts
- Larger jumps (sample shifts) are immediately recognized

- Cosmic rays signals arrive as hyperboloid with subnanosecond structure
- Perfect cross-check for system stability

Instrument health

- Any radio telescope can detect air showers, if there is access to raw voltage data
- Unexpected failures are easily identified in raw voltage data

- Timing instability shows in polarization reconstruction
- No monitoring run needed
- 16 Anna Nelles, Science at Low Frequencies III, Pasadena, 2016

- Swapped cable in raw data
- Identifiable without analysis

Thunderstorms

- Cosmic rays during thunderstorm show unique polarization signature
- Traces the strength and the height of electric fields
- Cosmic rays radio signals are a surprising tool to study thunderclouds
- 17 Anna Nelles, Science at Low Frequencies III, Pasadena, 2016

Future plans

- LOFAR will continue to do high impact cosmic ray science, better statistics, higher energies, improved systematics
- Continued thunderstorm measurements little statistics in the Netherlands
- Long-term effort: SKA ultimate precision for cosmic rays and particle interactions in shower

• Requires engineering change proposal, currently under discussion

Conclusions

- Exciting astrophysics with LOFAR
 - LOFAR can resolve shower maximum to better than 20 g/cm²
 - good resolution reconstruction of cosmic ray particle type
 - will lead to improved understanding of sources and propagation
- Cosmic ray data is perfect monitoring tool
 - continous RFI monitoring
 - continuous timing-calibration and monitoring
 in-depth study of antenna properties

 - absolute calibration without sky models
- Unexpected science such as studying electric fields during thunderstorms

Proton fraction

0.8

-2.4

-3.0 og,

-3.6 -4 2

-4.8

-5.4