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Cosmic rays and air showers
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Radio emission of air showers

Electromagnetic component of
shower responsible for radio
emission

Emission arises from:
e+ and e- are accelerated In
geomagnetic field
(geomagnetic effect)
more e- than e+ in the shower
by collecting e- from
atmosphere
(charge excess)

Emission is affected by:
Superposition of emission

Cherenkov effects
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Traditional methods & radio detection

Air showers can be detected in
many ways

Particle detectors:
100% duty cycle

little sensitivity to primary
particle

Cherenkov and
Fluorescence detectors:
10% duty cycle and high
quality observing conditions,
sensitive to primary

Radio detectors:

> 95% duty cycle and
sensitive to primary particle

Cosmic ray

Fluorescence light

Fluorescence
telescope

Air shower
/
/
Cherenkov Particle Radio antenna

detector
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Detection at radio telescopes

Single antenna data LOFAR 30-80 MHz Particle detectors provide trigger
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* Signals are short non-repeating broad-band pulses
* Need access to raw voltage data
* full frequency range: 10 - 300 MHz, about 50 nanoseconds

* Arrival times in antennas determined by shower arrival direction,
source in atmosphere
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Measuring composition

Xmax ~ 600 g/cm? 650 g/cm? 700 g/cm?

Xmax

* Particle type
determines
interaction height, |
which determines |

1.4

. signal distribution o/ \
@ ¢ Prediction can be |
simulated |
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Measuring composition

Buitink et al., Phys. Rev D, 2014
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Fit quality of simulated
pattern to measured data,
determines most probable
value for shower height

LOFAR data is extremely

precise, often better than

20 g/cm?, which is current
standard of field

Detailed measurement of
single shower only possible
with radio

Examples: Proton and Iron
simulations



Measuring energy

Nelles et a/. JCAP 201 5 |
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determining energy
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With energy and composition
we can do Astrophysics
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Astrophysical results

800 Buitink et al, Nature 2016
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* Already with 100 showers, measurements competitive to other
experiments in the field

* High precision measurements determine strong light component at
transition energies of 10’7 - 1078 eV
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Astrophysical implications

LOFAR results already now put
tension on theories:

Thoudam et al, A&A 2016

KASCADE

TUNKA (EPOS-LHC)
LOFAR (EPOS-LHC)
Yakutsk (EPOS-LHC)

Auger (EPOS-LHC)

Kampert & Unger 2012

v TUNKA (QGSJET-1I-04)
B LOFAR (QGSJET-1I-04) -
A Yakutsk (QGSJET-11-04) _]
® Auger (QGSJET-11-04)
= WR-CRSs (C/He=0.1)
== WR-CRs (C/He=0.4)
GW-CRs

\
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Strong light component argues °F
against single type of source of  s- =
Galactic cosmic rays after the L2
knee, which suppresses :
protons °F
Strong light component, but not
purely protons, argues against E -
imprint of pair-productions "

More likely a second Galactic
component, caused by for
example Galactic-Wind or
Wolf-Rayet stars
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Synergies in astrophysics

Detailed source observations .
Improved composition and

Magnetic field measurements energy of cosmic rays

and models 1 .
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better understanding of sources

better understanding of propagation
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Synergies in calibration methods

Cosmic ray measurement Astronomical observation

* Single antenna, raw * Combined antenna
voltage data signals, visibilities

* no beamforming * beamformed

* no time-integration * time-integrated

* Very detailed
understanding of
individual antenna needed

* Detailed understanding of
station-beam needed

* Time-dependent
monitoring of array
performance

* Time-dependent
monitoring of single
antenna performance

* Absolute calibration on

» Absolute calibration on astronomical sources and

artificial sources sky models
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Antenna calibration
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RFI cleaning

, Median-average spectrum of all antennas, with flagging

* In raw voltage data: A stable phase difference
- between two-antenna pairs reveals RFI
transmitter

* Data can be recorded and flagged offline

Log-Spectral Power [ADU]

* Better accuracy than baseline fitting and
continuous monitoring of RFI environment
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Corstanje et al. A&A 2016
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Timing calibration
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Monitoring of phase differences
shows that also LOFAR clock
shows small drifts

Larger jumps (sample shifts)
are immediately recognized
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Cosmic rays signals arrive as
hyperboloid with
subnanosecond structure

Perfect cross-check for system
stability



Instrument health

Any radio telescope can detect air showers, if there is access to raw

voltage data

Unexpected failures are easily identified in raw voltage data
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Thunderstorms
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Cosmic rays during thunderstorm show unique
polarization signature

Traces the strength and the height of electric fields

Cosmic rays radio signals are a surprising tool to
study thunderclouds
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Future plans

LOFAR will continue to do high impact cosmic ray science, better
statistics, higher energies, improved systematics

Continued thunderstorm measurements — little statistics in the
Netherlands

Long-term effort: SKA - ultimate precision for cosmic rays and particle
iInteractions in shower

LOFAR core SKA core
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Requires engineering change proposal, currently under discussion
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Conclusions

* Exciting astrophysics with LOFAR

0.8f 1 -1.2

* LOFAR can resolve shower maximum to
better than 20 g/cm?

* good resolution reconstruction of cosmic ray
particle type

* will lead to improved understanding of _
sources and propagation e

Proton fraction

Helium fraction

» Cosmic ray data is perfect monitoring tool

* continous RFI| monitoring

* continuous timing-calibration and monitoring
* in-depth study of antenna properties

* absolute calibration without sky models

* Unexpected science such as studying electric
fields during thunderstorms
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