More than Towards one thousand Giant Radio Galaxies

Heinz Andernach

Depto. de Astronomía, Univ. Guanajuato, Mexico

heinz@astro.ugto.mx

in collaboration with

Roger Coziol
Ilse Plauchu-Frayn (OAN)
César A. Caretta
Juan Pablo Torres-Papaqui
Carlos Rodríguez Rico
Emmanuel Momjian (NRAO)

Eric F. Jiménez A. (INAOE, AIfA)
Iris Santiago-Bautista
Raúl F. Maldonado S. (INAOE)
Ingrid Vásquez B. (UTM Oaxaca)
Felipe Romero S. (UA Yucatán)
Alannia López López (USon)
Elizabeth López Vázquez

Science at Low Frequencies III, Pasadena, Dec 7-9, 2016

What are "Giant Radio Galaxies" (GRG)?

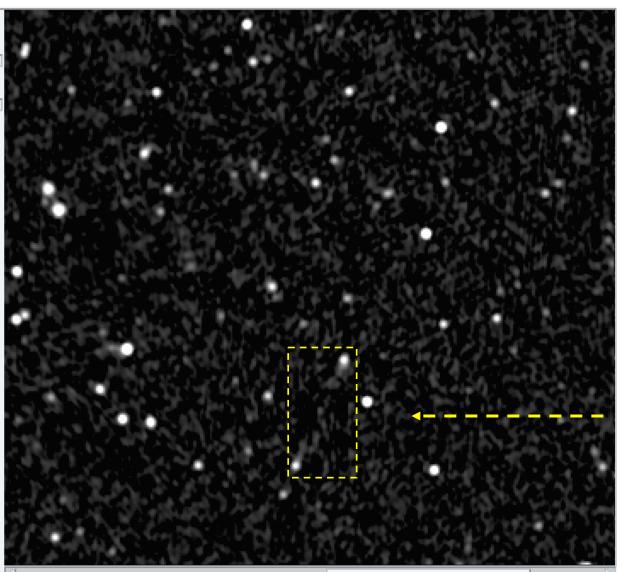
Usually whenever "largest linear size" (LLS) exceeds ~ 1 Mpc (in projection) First GRG discovered by Willis et al. 1974: LLS = $5.7 / h_{50}$ Mpc \rightarrow 4.2 $/ h_{75}$ Mpc Here: $H_0 = 75 \text{ km/s/Mpc}$ (but: for some authors LLS $\ge 0.75 \text{ Mpc}$ is a GRG)

Only partial lists of GRGs exist: 3C 236, WSRT 609 MHz Willis et al. (1974) 1996MNRAS.279..257Subrahmanyan 1999MNRAS.309..100Ishwara-Chandra 2001A&A...370..409Lara+ 2001A&A...374..861Schoenmakers+ 2005AJ....130..896Saripalli -SDSS 30" x 30" 2009AcA....59..431Kuligowska 2012ApJS..199...27Saripalli 2009 A Rep... 53.1086 Komberg+ 40' = 4.2 Mpc~85% are galaxies, but HST 10" x 1 ~15% are quasars (GRQs): 2004MNRAS.347L..795ingal 2010A&A...523A...9Hocuk & Barthel 2011AcA....61...71Kuzmicz+ 2012MNRAS.426..851Kuzmicz & Jamrozy

Of all radio galaxies, GRGs are NOT the most radio luminous sources, but

- * they have the lowest minimum energy densities (down to $\sim 10^{-15} \, \mathrm{J m^{-3}}$) in particles and magnetic field (U_{\min}), and due to their huge volume,
- * they have the highest energy content
 (a bit forgotten today, as only energy densities are quoted)

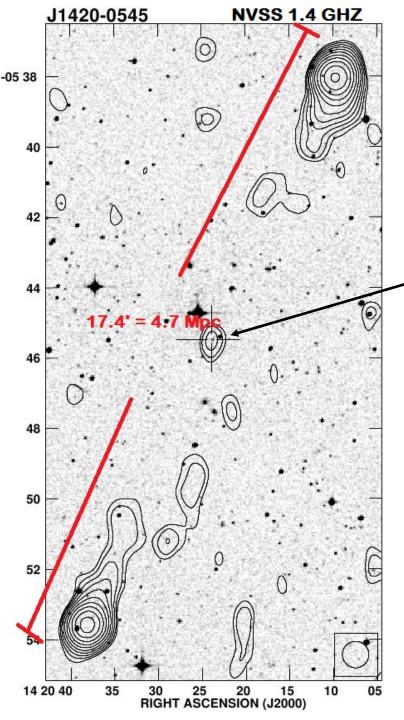
How are GRGs found?


- sometimes accidentally: looking for an optical ID of an "extended" radio source → if at high z and LAS >~ 2 arcmin → LLS > 1 Mpc
- once we "know" their radio morphology we can do a systematic search in radio surveys covering large parts of the sky

Example:

- 2001A&A...374..861Schoenmakers+ inspected the 325-MHz WENSS
 - → found 105 candidate GRGs (now: 57 confirmed)
 - advantages of WENSS:
- * sensitive to spatial components up to ~1°
- * radio lobes dominate at lower frequencies
- * radio cores (host galaxies) dominate at higher frequencies

Since 1998: a more complete and sensitive survey: NVSS (NRAO VLA Sky Survey, Condon et al. 1998)


- covers 82 % of the sky (Dec > -40°) at 1.4 GHz (λ = 21 cm)

- angular resolution 45"
- minim. flux ~2 mJy
- catalogue of 1,800,000 sources
- atlas of 2300 images of 4° x 4°

The currently largest GRG, is J1420-0545 (cf. Machalski et al. 2008ApJ...679..149M)

discovered on NVSS atlas image by eye inspection

How does one know it is a GRG?

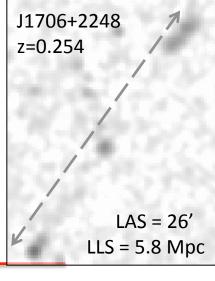
- * The nucleus must coincide with a galaxy or QSO, which may be very faint
- * the supposed lobes must NOT coincide with a galaxy (except for projection)
- * the radio structure should show certain symmetry (by experience from other GRGs)

host galaxy (R=19.7, z=0.31)

total angular size = LAS ~ 17.4′, \rightarrow LLS = 4.7 Mpc (H₀ = 75 km/s/Mpc (Machalski et al., 2008)

This is only the **projected size**: with an inclination with respect to the plane of the sky it may well be larger!

In 2012: only ~100 GRGs known, and NOBODY HAD INSPECTED the full image atlas of the NVSS . . . (available since 1998!)



Raúl F. Maldonado S.

Finding Giant Radio Galaxies (GRGs) in Imaging Radio Surveys

Heinz Andernach & three summer students
Universidad de Guanajuato, Mexico 2012
poster at adsabs.harvard.edu/abs/2012sngi.confE..33A

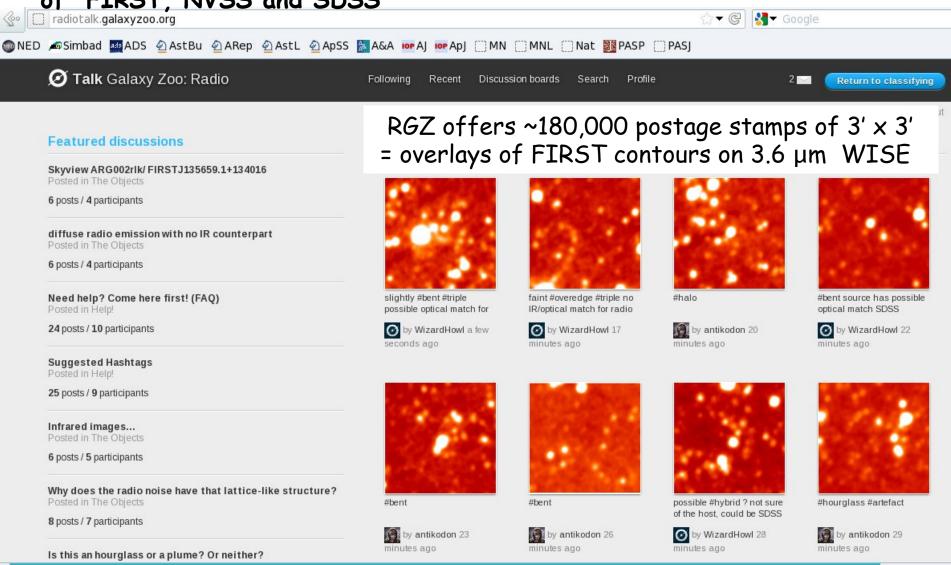
Known in 2012: ~100 GRGs with LLS > 1 Mpc /h₇₅ all have LLS <3 Mpc; except 2 with 4.2 and **4.4 Mpc** (only small fraction from visual inspection of radio atlases)


Method: inspect **all 3050 images** (4° x 4°) of NVSS and SUMSS covering **all sky** at ~45" resolution look for: extended or triple sources with LAS >~ 4' (after "training" with known GRGs in NVSS)

- * check NED for optical ID with known z, near radio core or symmetry center → derive LLS (Mpc)
- * classify the optical ID: (a) already known as GRG, (b) known RG, (c) yet unknown as radio source

Results Aug. 2012: we find the largest yet known GRG with LAS = 26', $z = 0.254 \rightarrow LLS =$ **5.8 Mpc**;

- * we duplicate the number of GRGs to ~200, and quadruple N_{GRG} with LLS > 3 Mpc (from 2 to 8)
- * we add 4 new GRQs at z > 1, and find the first GRG identified with an **optical spiral**


- □ Three summer students logged the positions of ~17,000 potential GRGs in NVSS, WENSS & SUMSS
- ☐ Most promising ones followed up by H. A. since 2012
- □ Additional sources of GRG candidates: e.g.
- > 2011ApJS..194...31Proctor D.D.: Morphological Annotations for Groups in the FIRST Database (most with LAS < 1', but also very few GRGs)
- > 2016ApJS..224...18Proctor D.D.: Selection of Giant Radio Sources from NVSS (no optical IDs, ~1/3 of her 1620 candidates were already in my compilation; LAS up to ~20', already 20 new GRGs found, perhaps another 20 expected)
- 2016PASA...33...52Flesch E.: The Million Optical Radio/X-ray Associations (MORX) catalogue (includes optical objects with double lobes with LAS < 4')</p>
- > 2016MNRAS.460.2385Williams W.L.+ LOFAR 150-MHz obs. of Bootes

. . .

Until now: I checked ~300 references with promising samples for the presence of GRGs (200 other ref's to go ...)

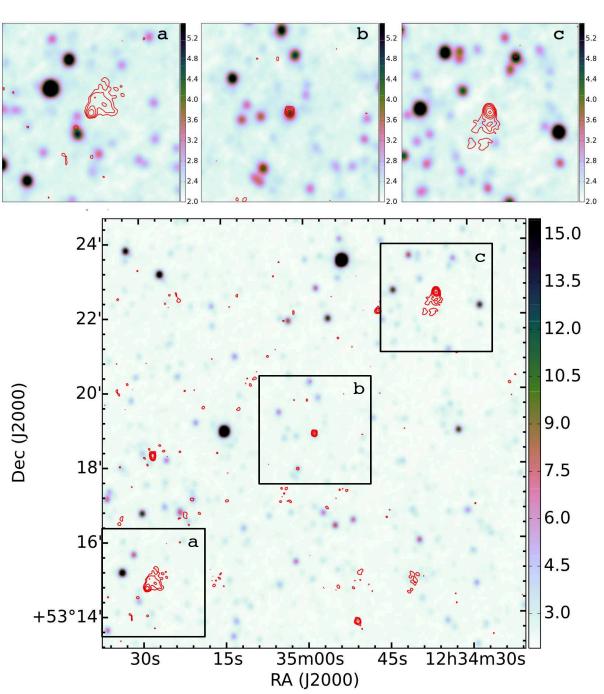
→ "outsourcing" seems necessary . . . in Dec. 2013: Radio Galaxy Zoo was launched

Example of a discussion page: each icon allows to open larger images of FIRST, NVSS and SDSS

→ requires follow-up by science team → diverse results

Will Giant Radio Galaxies (GRG) be found in RGZ?

FIRST: angular resolution 5.4", largest component detectable ~2'

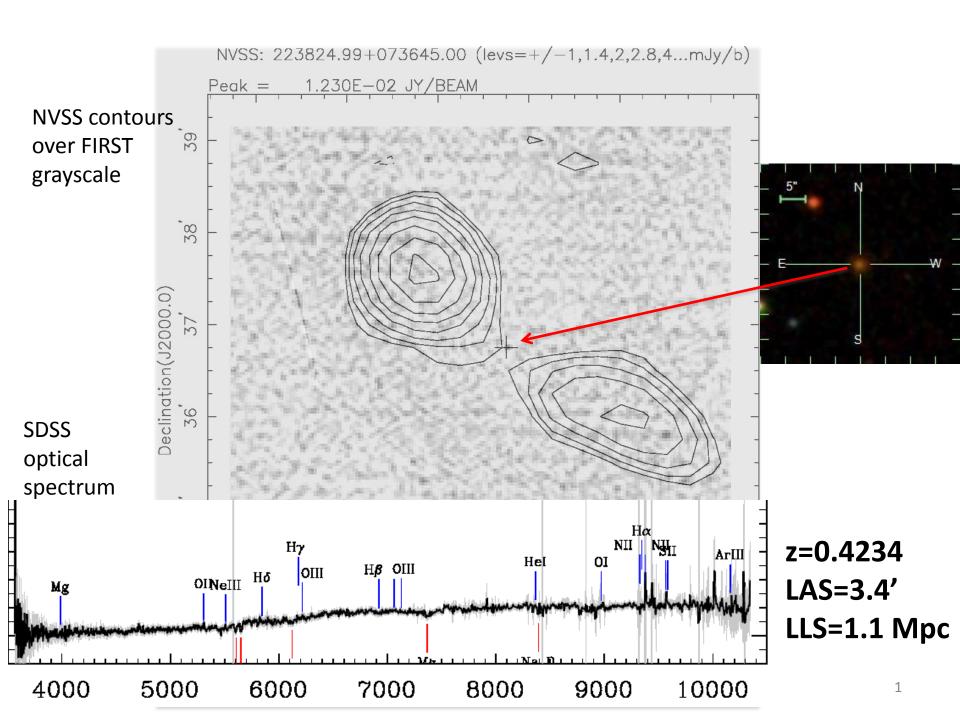

 \rightarrow unlikely to reveal new GRGs (needs LAS \gtrsim 2 arcmin at z ~ 1.0-1.5)

From Dec 2013 through September 2016:

RGZ users found / refound / pointed me at

- 313 giant RGs (> 1 Mpc); 201 of them newly found in RGZ; of these 201, 120 have no doubt about optical ID or GRG nature; 6 are larger than 2 Mpc; another 16 larger than 1.5 Mpc (LAS=4.0' ...9.7')
 - are larger than 2 Mpc; another 16 larger than 1.5 Mpc (LAS=4.0 ...9.7 155 (~78%) were found by 2 specific "super"users;

Comparison of published GRGs and those newly found in RGZ				
median z fraction of QSOs	231 published 0.26 38 (16%)	201 new RGZ GRGs 0.57 ← 34 (17%)		
median r'mag median LAS (') median LLS (Mpc) N (LLS > 2 Mpc)	18.2 6.2	20.8 3.35 1.18 6		

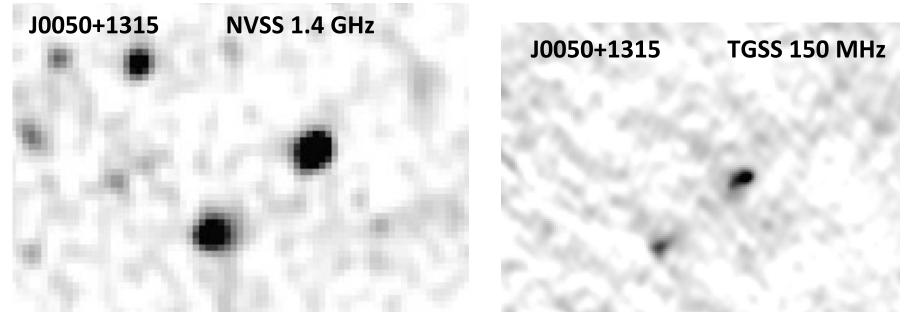

J1234+5318 was rediscovered in Radio Galaxy Zoo 6 days after its start!

Looking at only one lobe (with no opt. ID) 2 volunteers noted its huge size of 11.2' $z_{phot} = 0.6 \rightarrow 4.2 \text{ Mpc}$

Image from the RGZ "definition paper" 2015MNRAS.453.2326B

→ our optical spectroscopy confirmed z_{phot} to within ~4%,

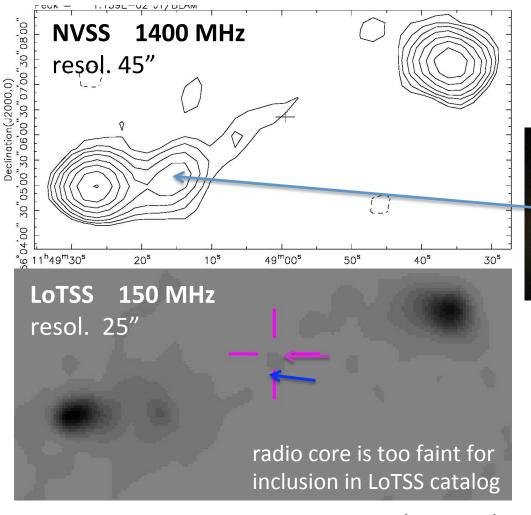
we also confirmed z_{phot} for two QSOs at z=1.3 and 1.8 to within 5% of z_{phot}

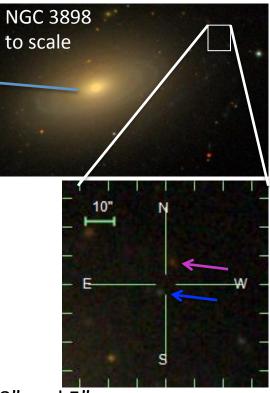


More recent large-scale surveys: TGSS-ADR1 (GMRT)

Interna et al. 2016, submitted (arXiv:1603.04368)

- > covers 91% of sky at 150 MHz with 25" resolution
- > not as sensitive as NVSS:
 - → it does not "see" the lowest-surface brightness NVSS emission but it has better resolution!


Many sources are easier to recognize in TGSS


not covered by FIRST \rightarrow no radio core detected \rightarrow host uncertain, but has to lie at z > 0.3

TGSS and SDSS allow to identify the host z_{spec} =0.344 LAS = 5.55' LLS = 1.5 Mpc where z_{spec} from SHELS (2016ApJS..224...11G)

Candidate GRG (from students in 2012): too faint for TGSS-ADR1, but

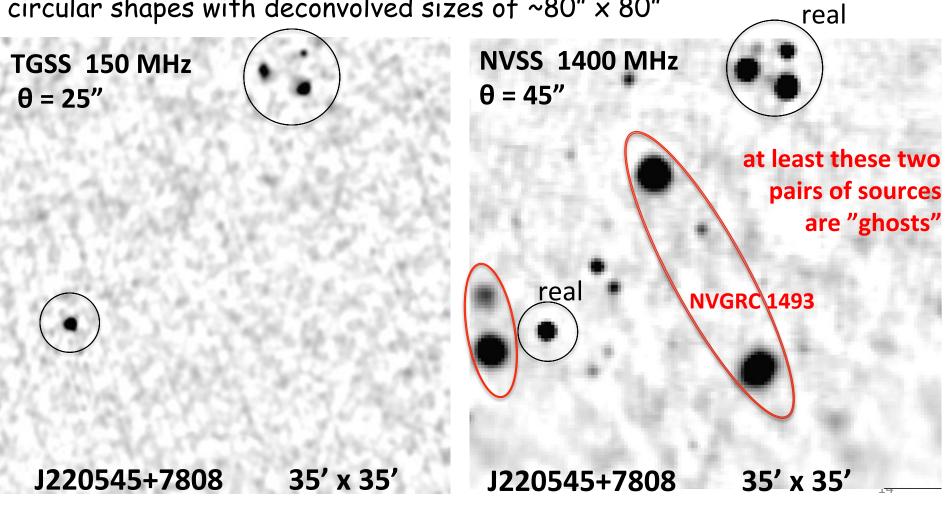
it is covered by LoTSS @ 150 MHz (Shimwell+2016, arXiv:1611.02700) LOFAR Two-metre Sky Survey, 25" resolution

LoTSS-core at J114859.77+560613.3: 2 hosts within 8" and 5":

SDSS J114859.50+560621.2, r'=21.28, $z_{phot}=0.4244$, or

SDSS J114900.02+560610.6, r'=21.38, z_{phot}=0.422;

in SDSS DR7, but not in later DRs (due to halo of NGC 3898?)

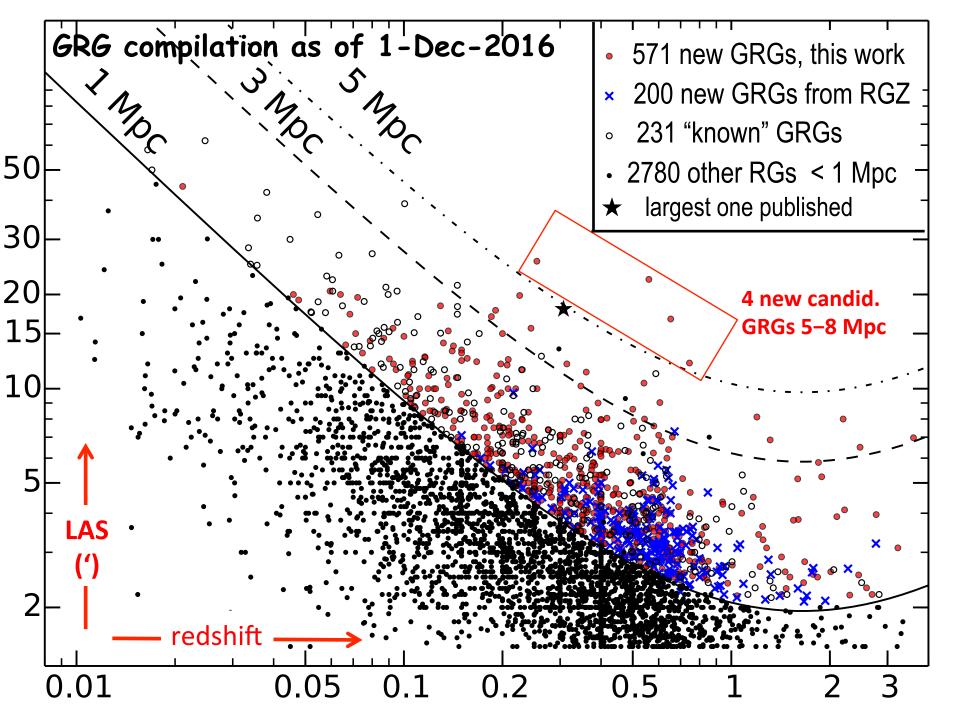

FIRST: only shows SE hotspot, but resolves out the NW lobe

$$\rightarrow$$
 with LAS = 7.7'

Some bad news: NVSS has regions with "ghost" (artificial) sources

Proctor (2016) classifies her candididate NVGRC 1493 like this: "d? points, both fuzzy, also at least two other similar nearby"

From a few other examples I found \rightarrow NVSS "ghosts" all have circular shapes with deconvolved sizes of ~80" \times 80"

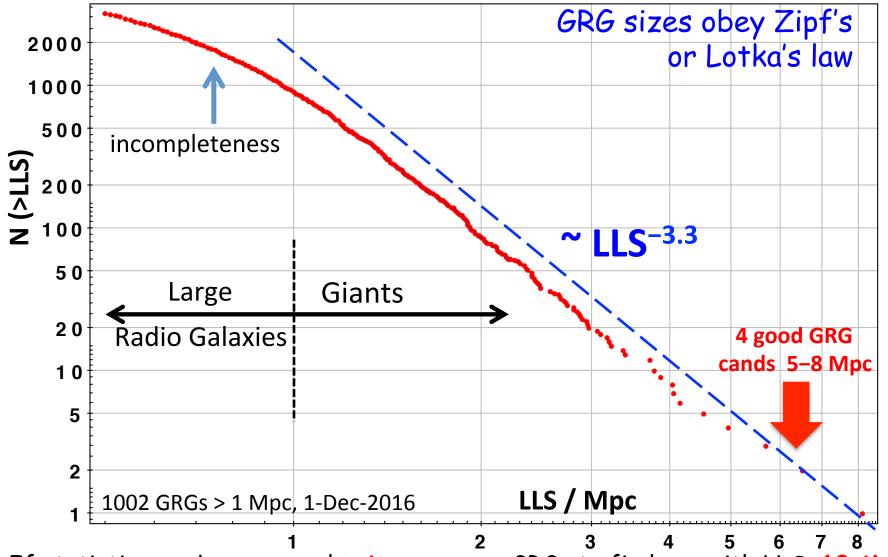


Very essential for this work: combination of FIRST+SDSS, but also the huge amount of photometric redshifts now available:

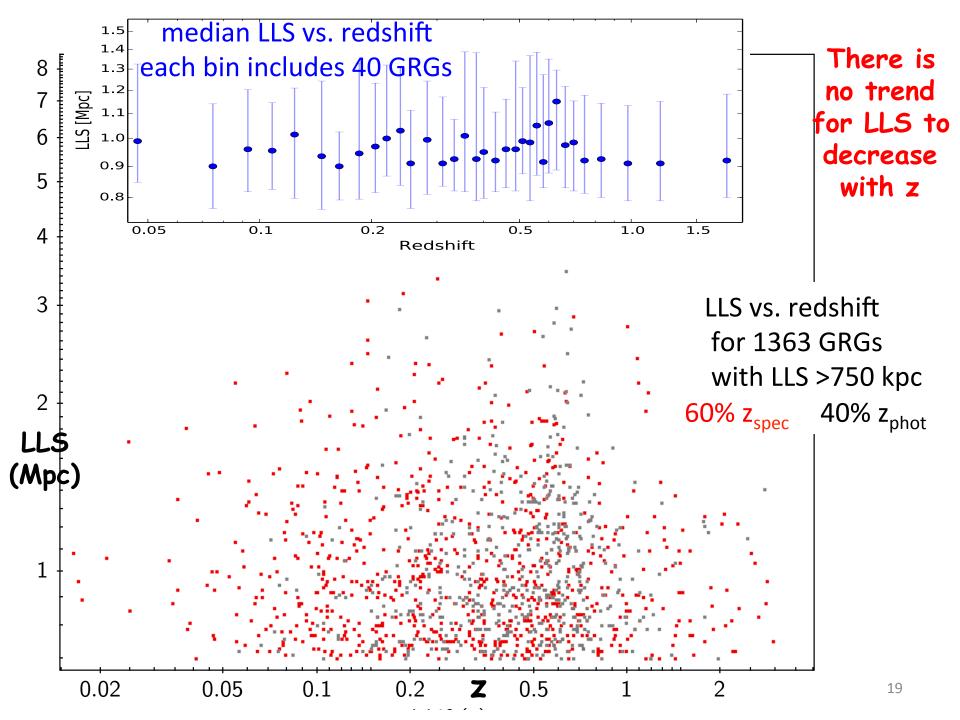
2004ApJS155257Richards+	SDSS DR1 QSOs	100,563	
2004MNRAS.351.1290Rowan-Rob.	ELAIS field	3,523	
2007MNRAS.380.1608Lopes P.A.A.	LRGs in SDSS-DR5	1,459,536	
2007MNRAS.37568Collister+	SDSS DR4 LRGs	1,214,117	
2009ApJS18067Richards+	SDSS DR6 QSOs	1,015,082	
2010ApJ714.1305Strazzuolo+	Deep SWIRE AGNs	1,580	
2011MNRAS.416857Smith+	Herschel-ATLAS	6,876	
2011ApJ729141Bovy J.+	SDSS DR8	4,009,058	
2011ApJ73621Szabo+	SDSS clusters	69,173	
2012ApJ75783Desai+	Blanco Cosm. Survey	1,955,400	
cesam.lam.fr/cfhtls-zphots	SDSS stripe82	13,621,717	
2013MNRAS.428.1958Rowan-Rob.	SWIRE, Lockman	1,009,607	
2014ApJS2109Bilicki+	2MASS 2MPZ	928,352	
2014A&A568A.126Brescia+	SDSS-DR9	143,500,000	
2015ApJS21912Alam+	SDSS DR12	208,474,076	
2015PASA3210Flesch	Half Million Quasars	510,764	
2015MNRAS.452.3124DiPompeo+	SDSS QSOcands	5,537,436	←
2015ApJS21939Richards+	SDSS-III/BOSS	2,490,080	
2016ApJS2255Bilicki +	SCOSxWISE	78,000,000	

464,000,000

Total:



The GRG compilation as of 01-Dec-2016


- * Total of 1003 GRGs \rightarrow 1 Mpc/h₇₅ (~310 have minor doubts) only 200+ are reported as GRGs, spread over dozens of papers
- * difficult to tag as "published": NED has only 55 GRGs: 36 have LLS > 1 Mpc; 18 have LLS < 1 Mpc; 1 is wrong ID (4C vs. 4CT)
- * vast majority of FR II morphologies, but often one or both lobes are resolved out (very diffuse) in FIRST
- * 52% have z_{spec} : 37% have good z_{phot} , ~10% are "best guesses"
- * 83% galaxies, 16% quasars, ~1.5% unknown (e.g. WISE-only)
- * median z is 0.4: 0.364 for galaxies and 0.83 for QSOs
- 57 GRGs lie at z > 1, and a few up to z~3!
 Additional objects collected "in passing" ...
- 3500 sources of LAS = 10 kpc ... 1 Mpc (INCOMPLETE)
- of these, ~750 are larger than 750 kpc (called GRGs by some)
- this is the largest-ever compilation of linear source size

How fast does the number of GRGs decrease with their size?

If statistics works: we need twice as many GRGs to find one with LLS~10 Mpc

Some challenging trends . . .

- > slope of log(N) log(size) seems to vary with redshift: 500 "nearby" GRGs (z < 0.4) = 3.47 ± 0.02 5 σ difference 501 "distant" GRGs (z > 0.4) = 3.28 ± 0.04
 - \rightarrow are we missing some nearby GRGs (for having an LLS \rightarrow 1° or too low a surface brightness?)
- > mean density of Universe grows as $\sim (1+z)^3$ So, how can GRGs grow to these sizes even at z > 1?
- > CMB photon density grows as ~(1+z)4
 - → synchrotron-emitting electrons suffer severe "inverse Compton" losses
 - \rightarrow diffuse sources at high redshift should "disappear" more rapidly than nearby ones (at z ~ 0)
- > Cosmology predicts a surface brightness dimming ~ (1+z)4
 - → diffuse sources should become undetectable at high z

We classified SDSS spectra for ~200 GRGs → their hosts are of any optical activity type (QSO, Sy1, Sy2, LINER, dwAGN, NoEm), and

at z < 0.4 low-luminosity AGN (dwAGN) dominate, while

at z > 0.4 high-luminosity AGN (QSO/Sy1/Sy2) dominate

Are there trends in radio symmetry for GRGs?

For ~240 GRGs (with SDSS optical spectra) we used NVSS & FIRST images to measure for both lobes (arms): total flux, length, width, and orientation and we find:

- \succ armlength ratio (ALR) = $\frac{\text{length of the stronger lobe}}{\text{length of the weaker lobe}}$
 - \rightarrow ALR varies from 0.3 to ~3.5, with a median of ~0.9
 - → any trend for the stronger lobe to be the shorter one is weak
- >the median bending angle between lobes is ~5°
- >the larger sources are not significantly straighter
- >quasars do not differ from galaxies in radio symmetry nor in their linear size distribution

Lessons learnt

- the simultaneous coverage of low-res (NVSS), high-res (FIRST). and deep optical surveys (SDSS) with good photometric redshifts has been crucial for this work
 - → will there be such optical surveys in the south when EMU starts?
- contributions of citizen scientists will be essential for future surveys
- The radio morphology of (not only giant) sources is surprisingly varied (just like the optical morphologies of galaxies)
 - → after Hubble's and deVaucouleurs' Atlas of Galaxy Morphology it is time for an Atlas of Radio Morphology (with a highly multidimensional parameter space)
- ◆ The side-to-side asymmetries of GRGs clearly suggest that they are tracers of the large-scale structure on Mpc scales
 - → requires deep redshift surveys within ~10 Mpc around GRGs (see 2013MNRAS.432..200Malarecki and 2015MNRAS.449..955Malarecki)