Extrasolar Space Weather Monitoring from the Ground: Paving the Way for FARSIDE

Marin M. Anderson Jet Propulsion Laboratory

January 13, 2021 AAS 237 Splinter Session: Low Frequency Radio Astronomy for Cosmic Origins

Measuring exoplanetary and stellar radio emission is critical for understanding how both the exoplanetary magnetosphere and the surrounding space weather environment influences habitability.

Coronal mass ejections (CMEs)

Earth's Auroral Kilometric Radiation (AKR)

both the exoplanetary magnetosphere and the surrounding space weather environment influences habitability.

Coronal mass ejections (CMEs) and stellar energetic particle events (SEPs)

- Occurrence rates as a function of spectral type, age, flare activity?
- Evolution of activity and rotation
- Detections necessary for understanding high energy photon and particle environment around stars

Measuring exoplanetary and stellar radio emission is critical for understanding how

Exoplanetary radio emission

- Insight into exoplanetary dynamos, interior compositions and structure
- Are magnetospheres important for atmospheric retention?

Coronal mass ejections (CMEs) and Solar energetic particle events (SEPs)

- Solar CMEs / SEPs are associated with Type II / III radio bursts
- Langmuir waves —> plasma emission

•
$$\nu_p \propto \sqrt{n_e}$$

Exoplanetary radio emission

- Electron cyclotron maser emission (ECME)
- $\nu_{\rm CVC} \propto B$
- Emission is circularly polarized and beamed in a hollow cone with large opening angle along magnetic field

Clarke et al. 2017

Neither exoplanetary radio emission nor Type II / III stellar radio bursts have been detected to date.

- Lynch+2017, Villadsen+2019).
- (Vedantham + 2020a).
- 144 MHz (**Vedantham+2020b**).

• Active flare stars are emitters of coherent radio bursts indicative of auroral processes (e.g.,

Detection of solar Type IV-like emission from Proxima Cen (Zic+2020).

 Detection of auroral radio emission from the inactive, slowly rotating M4.5 dwarf GJ1151 evidence of a sub-Alfvénic interaction of the stellar magnetic field with a close-in planet

• Radio aurorae have been detected on in ultracool dwarfs (across a range of spectral types, from M9 to T6, e.g. Hallinan+2015, Kao+2018) at GHz frequencies, and most recently at

• Detection of radio emission associated with the τ Boötis planetary system (**Turner+2020**).

5

How can we optimize the search for extrasolar space weather, and begin detecting and characterizing a wide range of systems en masse?

Capitalize on characteristics of emission mechanisms (Stokes V)

Image credit: C. Carter & G. Hallinan

Extrapolation from our own solar system suggests it is necessary to go below 100 MHz to directly detect exoplanetary radio emission.

Zarka 2001

Capture a large fraction of the sky in order to simultaneously monitor a large sample of objects.

 Sensitive to rare CME-driven events that can increase the output power in exoplanetary radio emission by orders of magnitude.

-14 10 **AKR Radio Power** ю^{і5′} 6^امَا 10

Earth's Auroral Emission

It remains an open question whether the Solar flare–CME relation can be extrapolated to higher flare energies and more magnetically active stars.

Relationship between CME mass and flare flux for the Sun

Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA)

OVRO-LWA Stage I (2013–2014)

- 251 LWA crossed-dipole antennas, in 200 m diameter core
- 5 LEDA antennas total power measurements (Price+2018)
- 28-84 MHz band, 24 kHz resolution
- full cross-correlation with 512input LEDA correlator (Kocz+2015)
- 1 deg resolution

OVRO-LWA Stage II (2015–2016)

- 32 additional antennas out to 1.5 km (Long Baseline Demonstrator Array)
- RF signal transport over optical fiber
- 7 arcmin resolution at top of band
- >10,000 point sources in single
 13 s snapshot

~800 mJy snapshot sensitivity

OVRO-LWA-352 (2019–)

- Additional 64 antennas out to
 2.6 km, for a total of 352
- Complete redesign of the analog receiver boards
- Digital backend redesign, nextgen correlator (maintaining the FPGA/GPU architecture of the existing 512-input LEDA), with
 704 inputs and 70 MHz BW

 Upgraded calibration and imaging cluster, 3 PB usable storage and 4 TB RAM

Simultaneous: standard correlation mode beamforming mode (12 beams) cosmic ray detection

Extrasolar space weather monitoring with the OVRO-LWA

- Volume-limited sample of nearly 4000 systems.
- stellar ages and spectral types.

• Search for signatures of space weather across a broad range of

14

