AY 20 Fall 2010 # Stellar Atmospheres: Opacity Reading: Carroll & Ostlie, Chapter 9.2 #### Stars are not blackbodies - e.g. Sun atmosphere "opaque" at various wavelengths - no outward flux of photons at these wavelengths $$L = 4\pi R^2 \sigma T_e^4$$ and $F_{surface} = L/4\pi R^2 = \sigma T_{eff}^4$ "surface layer" is region from which continuum radiation emerges \rightarrow T_e based on reduced flux → surface temperature given by Te only for a blackbody ### Local Thermodynamic Equilibrium (LTE) When particles and radiation are in equilibrium at a single temperature →thermal equilibrium Overall, stellar atmospheres cannot be in thermal equilibrium Define a local environment where thermal equilibrium holds i.e. conditions can be described a single temperature For LTE: distance over which temperature changes significantly >> mean free path of particles/photons #### Mean free path (very simplistically) ``` Any 2 atoms in an ensemble of number density n "collide" if they pass within 2a_0 of one another (a_0 = Bohr radius) Instead, suppose 1 atom, radius 2a_0, moving at velocity v: in time t, it sweeps out volume V = \pi(2a_0)^2vt = \sigma vt \sigma = collision cross-section = \pi(2a_0)^2 \therefore number of collisions = n_{\sigma}vt mean free path = average distance between collisions = { \ell = distance / # of collisions = vt/novt \therefore mean free path = 1/n\sigma For Sun*, at ~ 5650K, \ell ~ 2 x 10⁻² cm H_T \sim 700 \text{ km} = 7 \times 10^7 \text{ cm} \rightarrow H_T / \ell \sim 2.5 \times 10^9 \therefore H_{\tau} \gg \ell ``` ∴ For atoms, environment between collisions looks to be at constant T_{kin} #### Stellar opacity Absorption - any process that removes photons from beam - = true absorption (due to excitation to higher excited states) + scattering due to photon-free electron "collisions" Decrease in intensity of beam at wavelength λ = dI_{λ} decrease $\propto I_{\lambda}$, gas density ρ , and distance traversed, ds - $\therefore dI_{\lambda} = -\kappa_{\lambda}I_{\lambda}\rho ds$, $\kappa_{\lambda} = absorption coefficient = opacity$ - opacity = cross-section per unit mass of material for absorbing wavelength λ photons (c²/gm) - dependent on gas composition, density, and temperature We have $dI_{\lambda} = -\kappa_{\lambda}I_{\lambda}\rho ds$ = change (decrease) in intensity Suppose initial intensity = I_0 at s=0 Final intensity after light has travelled distance $s = I_{\lambda,f}$ so $$\int_{I_{\lambda,0}}^{I_{\lambda,f}} \frac{dI_{\lambda}}{I_{\lambda}} = -\int_{0}^{s} \kappa_{\lambda} \rho ds$$ $$\therefore I_{\lambda,f} = I_{\lambda,0} e^{-\int \kappa_{\lambda} \rho ds}$$: for uniform gas with constant κ_{λ} , ρ : $I_{\lambda} = I_{\lambda,0}e^{-\kappa_{\lambda}\rho ds}$ For pure absorption, intensity falls off exponentially i.e. by factor e^{-1} at characteristic distance $\ell = 1/\kappa_{\lambda}\rho$ For Sun* at 5000 Å, ℓ = 160 km; scale height H_T = 677 km LTE not strictly applicable! #### for scattered photons: characteristic distance ℓ = photon mean free path and $$\ell = 1/n\sigma_{\lambda} = 1/\kappa_{\lambda}\rho$$ $n\sigma_{\lambda}$ and $\kappa_{\lambda}\rho$ inversely proportional to ℓ = fraction of photons scattered /meter of distance Recall $$I_{\lambda} = I_{\lambda,0}e^{-\kappa_{\lambda}\rho ds}$$ Define optical depth, τ_{λ} , back along light ray: $d\tau_{\lambda} = -\kappa_{\lambda}\rho ds$ (s measured in direction of photon's motion i.e. at stellar surface $\tau_{\lambda} = 0$)* $$\dot{\tau}_{\lambda} = -\int_{0}^{s} \kappa_{\lambda} \rho ds$$ and $$I_{\lambda} = I_{\lambda,0} e^{-\int_{0}^{s} \kappa_{\lambda} \rho ds} = I_{\lambda,0} e^{-\tau_{\lambda}}$$ #### Optical depth continued Since $$I_{\lambda} = I_{\lambda,0}e^{-\tau_{\lambda}}$$ if τ_{λ} = 1 at ray's start point, at surface of star it will have decreased by factor of e⁻¹ Typically see (in line of sight) into atmosphere only to $\tau_{\lambda} \approx 1$ (for pure absorption intensity declines exponentially for any ray direction) Optical depth = number of mean free paths from original position to surface since $$\ell = 1/\kappa_{\lambda}\rho$$, $\tau_{\lambda} = \kappa_{\lambda}\rho ds = ds/\ell$ Usage: gas through which light passes optically thick if $\tau_{\lambda} >> 1$ gas through which light passes optically thin if $\tau_{\lambda} << 1$ e.g. optical depth of earth's atmosphere at different wavelengths* ## Sources of Opacity: slowly varying affects continuum; rapid variations \rightarrow dark spectral lines - 1. bound-bound transitions: photons "lost" to beam at discrete λs - 2. free-free transitions: absorption & bremsstrahlung no preferred λ - 3. bound-free transitions: photoionization* any photon w. λ < hc/ χ - 4. electron scattering: Thompson scattering at high T, ρ ; also Compton or Rayleigh scattering - * photoionization of H^- ions important continuum opacity source in stars cooler than F0 B and A stars: continuum opacity from photoioniz. of H atoms or free-free absorption O stars: electron scattering and photoionization of He Fig. 5.2. Different kinds of transitions between energy levels. Absorption and emission occur between two bound states, whereas ionization and recombination occur between a bound and a free state. Interaction of an atom with an free electron can result in a free-free transition