
AY 20

Fall 2010

Stellar Atmospheres: Opacity

Reading: Carroll & Ostlie, Chapter 9.2

Stars are not blackbodies - e.g. Sun

atmosphere "opaque" at various wavelengths - no outward flux of photons at these wavelengths

$$L = 4\pi R^2 \sigma T_e^4$$

and $F_{surface} = L/4\pi R^2 = \sigma T_{eff}^4$

"surface layer" is region from which continuum radiation emerges

 \rightarrow T_e based on reduced flux

→ surface temperature given by Te only for a blackbody

Local Thermodynamic Equilibrium (LTE)

When particles and radiation are in equilibrium at a single temperature →thermal equilibrium Overall, stellar atmospheres cannot be in thermal equilibrium

Define a local environment where thermal equilibrium holds

i.e. conditions can be described a single temperature For LTE:

distance over which temperature changes significantly >> mean free path of particles/photons

Mean free path (very simplistically)

```
Any 2 atoms in an ensemble of number density n "collide" if
   they pass within 2a_0 of one another (a_0 = Bohr radius)
   Instead, suppose 1 atom, radius 2a_0, moving at velocity v:
      in time t, it sweeps out volume V = \pi(2a_0)^2vt = \sigma vt
                    \sigma = collision cross-section = \pi(2a_0)^2
                    \therefore number of collisions = n_{\sigma}vt
  mean free path = average distance between collisions = {
              \ell = distance / # of collisions = vt/novt
                       \therefore mean free path = 1/n\sigma
              For Sun*, at ~ 5650K, \ell ~ 2 x 10<sup>-2</sup> cm
         H_T \sim 700 \text{ km} = 7 \times 10^7 \text{ cm} \rightarrow H_T / \ell \sim 2.5 \times 10^9
                                 \therefore H_{\tau} \gg \ell
```

∴ For atoms, environment between collisions looks to be at constant T_{kin}

Stellar opacity

Absorption - any process that removes photons from beam

- = true absorption (due to excitation to higher excited states) + scattering due to photon-free electron "collisions" Decrease in intensity of beam at wavelength λ = dI_{λ} decrease $\propto I_{\lambda}$, gas density ρ , and distance traversed, ds
 - $\therefore dI_{\lambda} = -\kappa_{\lambda}I_{\lambda}\rho ds$, $\kappa_{\lambda} = absorption coefficient = opacity$
- opacity = cross-section per unit mass of material for absorbing wavelength λ photons (c²/gm)
 - dependent on gas composition, density, and temperature

We have $dI_{\lambda} = -\kappa_{\lambda}I_{\lambda}\rho ds$ = change (decrease) in intensity Suppose initial intensity = I_0 at s=0 Final intensity after light has travelled distance $s = I_{\lambda,f}$

so
$$\int_{I_{\lambda,0}}^{I_{\lambda,f}} \frac{dI_{\lambda}}{I_{\lambda}} = -\int_{0}^{s} \kappa_{\lambda} \rho ds$$
$$\therefore I_{\lambda,f} = I_{\lambda,0} e^{-\int \kappa_{\lambda} \rho ds}$$

: for uniform gas with constant κ_{λ} , ρ : $I_{\lambda} = I_{\lambda,0}e^{-\kappa_{\lambda}\rho ds}$

For pure absorption, intensity falls off exponentially i.e. by factor e^{-1} at characteristic distance $\ell = 1/\kappa_{\lambda}\rho$

For Sun* at 5000 Å, ℓ = 160 km; scale height H_T = 677 km LTE not strictly applicable!

for scattered photons:

characteristic distance ℓ = photon mean free path

and
$$\ell = 1/n\sigma_{\lambda} = 1/\kappa_{\lambda}\rho$$

 $n\sigma_{\lambda}$ and $\kappa_{\lambda}\rho$ inversely proportional to ℓ

= fraction of photons scattered /meter of distance

Recall
$$I_{\lambda} = I_{\lambda,0}e^{-\kappa_{\lambda}\rho ds}$$

Define optical depth, τ_{λ} , back along light ray:

 $d\tau_{\lambda} = -\kappa_{\lambda}\rho ds$ (s measured in direction of photon's motion i.e. at stellar surface $\tau_{\lambda} = 0$)*

$$\dot{\tau}_{\lambda} = -\int_{0}^{s} \kappa_{\lambda} \rho ds$$

and
$$I_{\lambda} = I_{\lambda,0} e^{-\int_{0}^{s} \kappa_{\lambda} \rho ds} = I_{\lambda,0} e^{-\tau_{\lambda}}$$

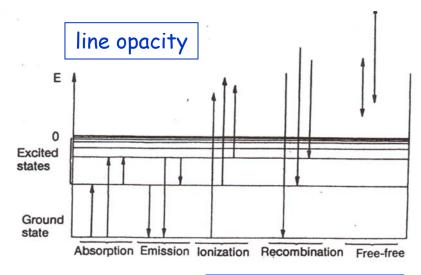
Optical depth continued

Since
$$I_{\lambda} = I_{\lambda,0}e^{-\tau_{\lambda}}$$

if τ_{λ} = 1 at ray's start point, at surface of star it will have decreased by factor of e⁻¹

Typically see (in line of sight) into atmosphere only to $\tau_{\lambda} \approx 1$ (for pure absorption intensity declines exponentially for any ray direction)

Optical depth = number of mean free paths from original position to surface


since
$$\ell = 1/\kappa_{\lambda}\rho$$
, $\tau_{\lambda} = \kappa_{\lambda}\rho ds = ds/\ell$

Usage: gas through which light passes optically thick if $\tau_{\lambda} >> 1$ gas through which light passes optically thin if $\tau_{\lambda} << 1$ e.g. optical depth of earth's atmosphere at different wavelengths*

Sources of Opacity: slowly varying affects continuum; rapid variations \rightarrow dark spectral lines

- 1. bound-bound transitions: photons "lost" to beam at discrete λs
- 2. free-free transitions: absorption & bremsstrahlung no preferred λ
- 3. bound-free transitions: photoionization* any photon w. λ < hc/ χ
- 4. electron scattering: Thompson scattering at high T, ρ ; also Compton or Rayleigh scattering
 - * photoionization of H^- ions important continuum opacity source in stars cooler than F0 B and A stars: continuum opacity from photoioniz. of H atoms or free-free absorption O stars: electron scattering and photoionization of He

Fig. 5.2. Different kinds of transitions between energy levels. Absorption and emission occur between two bound states, whereas ionization and recombination occur between a bound and a free state. Interaction of an atom with an free electron can result in a free-free transition

