AY 20

Fall 2010

# Hertzsprung-Russell Diagram & Stellar Radiation

Reading: Carroll & Ostlie, Chapter 8.2, Chapter 7

# Hertzsprung-Russell Diagram



original form of diagram:  $M_{\nu}$  as function of spectral type

- stars within 1 kpc of Sun (solar "neighborhood) + brightest stars (apparent) distribution of stars seems to have a pattern; 90% on main sequence
- > HNR  $\rightarrow$  main sequence stars dwarfs; luminous, late spectral type giants  $M_v$  and spectral type (i.e. L and  $T_{eff}$ ) are *intrinsic* stellar properties<sub>2</sub>





stars are not spread over the entire range of L,T

⇒clue to the way stars work

# Recall Yerkes (MKK) classification system Ia - V

L\* = $4\pi R_*^2 F = 4\pi R_*^2 \sigma T_e^4$   $\rightarrow$  absolute magnitude of stars of same spectral type varies with  $R_*$ 

$$R_* = \frac{1}{T_{eff}^2} \sqrt{\frac{L}{4\pi\sigma}}$$

for fixed R  $_{\star}$ , log L $_{\star}$   $\propto$  log T $_{\rm eff}$   $\rightarrow$  lines of constant R $_{\star}$  in H-R diagram Express R $_{\star}$ , T $_{\star}$ , L $_{\star}$ , in terms of R $_{\odot}$ , T $_{\odot}$ , L $_{\odot}$ ,







- Supergiants R > 100  $R_{\odot}$
- Giants 10  $R_{\odot}$  < R < 100  $R_{\odot}$
- main sequence stars (dwarfs)
- $0.1 R_{\odot} < R < 20 R_{\odot}$
- stellar density,  $\rho_* = \frac{M_*}{\frac{4}{3}\pi R_*^3}$  varies with position in H-R diagram
- C&O 8.2.1: average densities of Sun (G2V), Sirius (A1V), Betelgeuse (~MIa) 1.4 gms/cm<sup>3</sup> 0.8 gms/cm<sup>3</sup> 10<sup>-8</sup>ρ<sub>⊙</sub>
- Later: position of star on mainsequence depends on its mass

#### Stellar Properties from H-R diagram



ture 8.15 Luminosity classes on the H-R diagram. (Figure from Kaler, rs and Stellar Spectra, © Cambridge University Press 1989. Reprinted by the permission of Cambridge University Press 1989.

spectral type + luminosity class (class indicates line width)  $\rightarrow$   $M_{v}$  distance from m-M =5logd -5 spectroscopic parallax\*

radii from  $L + T_{eff}$  (see page 5 here), hence density if mass known

 $\frac{\text{white dwarfs}}{\text{R} \sim 0.001 \, \text{R}_{\odot}} \quad \frac{\text{supergiants}}{\text{R} \sim \text{few x } 10^3 \, \text{R}_{\odot}} \\ \rho \sim 10^9 \, \text{kg/m}^3 \, \rho \sim 10^{-4} \, \text{kg/m}^3 \\ \text{(some radii from interferometric measures of angular diameters of stars with known parallax )}$ 

masses from binary star observations

### Stellar parameters from binary system measures

- Binary or multiple star systems common
- Classifications
  - > Optical doubles neighbors by coincidence
  - Visual binaries both members of system can be resolved
    - Can monitor motion if P not too long  $\rightarrow$  angular sep<sup>n</sup> from ctr of mass
  - Astrometric binaries only one member visible; its motion reflects presence of a companion
  - $\blacktriangleright$  Eclipsing binaries orbital plane oriented so that one star periodically eclipses other  $\rightarrow$  associated variations in light intensity
    - Light curves show two stars  $\rightarrow$  relative  $T_{eff}$  for each star from depth of minima; radii based on eclipse duration
  - Spectrum binaries two distinguishable spectra. Orbital period may be so long that no variation of wavelength with time seen

# Spectroscopic binaries -periodic shift in positions of spectral lines is observed

- Lines shift around rest frequency as stars orbit each other
- Easiest to see when velocities in observer's line of sight
- Some component of velocity along line of sight required
- Orbital period should be not too long
- If one component much more luminous than other only one set of shifting lines



# Kepler's Laws generalized for binary systems

Both objects in a binary orbit the center of mass in ellipses with the center of mass at one focus

Kepler's  $2^{nd}$  law becomes  $dA/dt = \frac{1}{2} L/\mu = constant$ , L =total angular momentum of system;  $\mu = m_1 m_2/m_1 + m_2 = reduced$  mass  $\equiv a$  fixed mass  $\mu$  orbiting center of mass Integrating for one orbital period: t = P,  $A = \frac{1}{2} LP/\mu$   $A = \pi ab$  and  $b^2 = a^2(1-e^2)$ ,  $\therefore (LP/2\mu)^2 = \pi^2 a^4(1-e^2)$   $\therefore P^2 = 4\pi^2 \, \mu^2 a^4(1-e^2)/L^2$ 

From conservation of angular momentum:

L= 
$$\mu(GMa(1-e^2))^{1/2}$$
  
 $\therefore P^2 = 4\pi^2a^3/G(m_1 + m_2)$ 

P2 inversely proportional to total mass of the system

With P in years, a in AU, solar masses, constant = 1

#### Stellar masses from visual binaries

For orbital plane perpendicular to line of sight & in center of mass reference frame,\*

 $m_1/m_2 = a_2/a_1$ 

 $a_2$  and  $a_1$  are semi major axes of 2 ellipses

Angles subtended by these axes a distance d,  $\alpha_1$  and  $\alpha_2$ 

 $\alpha_1 \approx a_1/d$  and  $a_2 \approx a_2/d$ 

 $\therefore$   $\text{m}_{\text{1}}/\text{m}_{\text{2}}$  =  $\alpha_{\text{2}}/\alpha_{\text{1}} \rightarrow \text{mass ratio}$ 

From  $P^2 = 4\pi^2 a^3 / G(m_1 + m_2)$ ,

get (m<sub>1</sub> +m<sub>2</sub>) if semi-major axis of or of reduced mass (a=a<sub>1</sub>+a<sub>2</sub>) knowr need d;

 $(m_1 + m_2)$  and  $m_1/m_2 \rightarrow masses$ 

May have to take into account prope motion of C of M

Inclination of orbital plane also needed

$$m_1 + m_2 = 4\pi^2 \alpha^3/G P^2 (d/\cos i)^3$$

Mass Determination Using Visual Binaries



# Masses from double-line spectroscopic binaries







Max observed radial velocities  $v_r = v_1 \sin v_2 \sin v_3 \sin v_4 \sin v_5 \cos v_6$  changing i merely changes amplitude of sinusoids

For e <<1, velocities constant  $v_1 = 2\pi a_1/P$ ,  $v_2 = 2\pi a_2/P$ 

 $\therefore m_1/m_2 = v_2/v_1$ ; substituting  $\rightarrow m_1/m_2 = v_{2r}/v_{1r}$ 

ratio of masses independent of sini

From  $a = a_1 + a_2 = P/2\pi \times (v_1 + v_2)$  and Kepler's 3<sup>rd</sup>:

$$m_1 + m_2 = P/2\pi G \times (v_1 + v_2)^3$$

$$m_1 + m_2 = P/2\pi G \times (v_{1r} + v_{2r})^3 / \sin^3 i$$

But have to be able to measure both radial velocities

# Single line spectroscopic binary

- One star much more luminous than other
- e.g. planets orbiting other stars
- Replace  $v_{2r}$  in terms of stellar masses and  $v_{1r}$   $m_1 + m_2 = Pv_{1r}^3/2\pi G \sin^3 i \times (1 + m_1/m_2)^3$   $\rightarrow$  Mass Function Equation

$$\frac{m_2^3 \sin^3 i}{(m_1 + m_2)^2} = \frac{v_1^3 P}{2\pi G}$$

Mass function  $\rightarrow$  only lower limit to mass of  $m_2$  if sini unknown

# Mass Luminosity Relation

Masses of binary stars define empirical mass-luminosity relation For M > 3  $M_{\odot}$ , L  $\propto$   $M_{\star}^{3}$  For M < 0.5  $M_{\odot}$ , L  $\propto$   $M_{\star}^{2.5}$  VERY approximate

Plotting stars of known mass on H-R diagram (L v.  $T_{eff}$ ) also instructive





# Stellar properties from observables

```
Direct measurements
Distances (parallax)
Luminosities (U,B,V etc)
Masses (binaries)
Radii (eclipsing binaries,
interferometeric
measures)
```

Spectra also provide info on: Rotational velocities

> Chemical abundances Magnetic fields

Mass inflow-outflow

```
Using stellar spectra:
```

Spectral type  $\equiv T_{eff}$ Luminosity classes  $\equiv$  gravity, pressure, density Radial velocities, z

#### Position on HR Diagram:

Stellar radii
Distances (spectroscopic parallax)
main-sequence masses
(approx)
Ages of stars (later)