AY 20 Fall 2010

Electromagnetic Radiation:
Stellar Spectra

Reading: Carroll & Ostlie, Chapters 5, 8



Color Index: differences between stellar

radiation at different colors
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U-B = M, -M; or B-V = My -M, and so on
Note: smaller B-V = bluer = hotter

Recall distance modulus, m-M = 5logd - 5,
mg - my = Mg -M,

..Color index independent of distance
i.e. an intrinsic stellar property

Define Bolometric Correction = BC=m,, -V = M, -M,
(common usage: V=m,, B=m; etc; BC is -ve)



Earlier: monochromatic flux F,dA = L,/4nr?dA
(Note typo on p17 last class)

and F,dA = B,R2/r?2dA, R = stellar radius
- F,dA = B,(R?/r?)dA

my -mg = U - B = -2.6log(B AN,/ (BgALrg) + C 5
and B,(T) oc A
. Cy.p= U-B + 2.5l0g[(4400)°/(3650)° x 680/980]
And similarly for Cy_,

For Vega, assume magnitude seen in each filter is zero (very
approximate but works) — values for constants

Again color indices seen to be intrinsic to star
(and a measure of temperature)

Useful examples 3.6.1,3.6.2C & O



Color-Color Diagram indicates physical properties

Real stars don't behave like B-Bs

1 Hottest stars behave most like
black bodies

1 e.g. O5 star at 44,500K

U-B =-1.19, B-V = -0.33, - very blue
amax = 0.29/44500 ~6504

i.e. peaks outside range of U filter
(680A wide centered at 36504

Absorption of light in transit
. displaces from B-B line

Other factors also modify radiation
(see later)




Spectral Lines: Fraunhofer spectrum

Solar spectrum -absorption lines on continuum



Hydrogen

Sodium

Helium

“helium” - unidentified lines in Sun's spectrum; later discovered on Earth

MNeon

Mearcury
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Spectral lines due to presence of different elements
Detection in stars — chemical composition



Kirchhoff's Laws empirical again!

1. Hot opaque solid (dense gas) emits light
of all wavelengths — continuous spectrum
of radiation

2. Low density (fransparent) hot gas emits
spectrum of bright emission lines

3. Low density (transparent) cool gas in
front of a blackbody absorbs
wavelengths from the continuous
spectrum — dark absorption line
spectrum on continuous spectrum
(wavelengths same as emission lines from
hot gas)



Spectra produced by a diffraction grating

5.1 Spectral Lines

Figure 5.2 Spectrograph.

Diffraction grating = ruled lines = series of double slits
typically few x 1000 lines/mm — many pairs

dsin® = nA, where d = separation of ruled lines
~.A = dsin®/n o« sin/nN
where N = number of grating lines illuminated; 6 varies with A

Smallest separation measurable AL ~ A/nN
Resolving power of spectrograph = L/A\L
= 50,000 at Keck



Spectral lines — Doppler shifts — radial velocities

radial velocity, v,. = velocity of source in line of sight
Doppler: change in wavelength of a moving source of sound:
source moving away from observer: A . > A+ redshift
source moving towards observer: A . < A.. blueshift

O‘obs B kres‘r)/ }”r'es‘r - A}“/ 7\‘r'es’r - Vr'/ Vs,
(v speed of sound in medium)

not precisely applicable to light; medium not relevant

Define redshift parameter z = (A g - Most)/ Mot = AN Nipot
Non-relativistic case: speed of source << ¢, velocity of light
Z=AM Ayt =V, /C
for receding source v.> 0 (AL > 0)
for approaching source v, <0



e-m radiation: formation of spectral lines

* Quantum transitions
- energy levels within atomic and molecular systems quantized
- only discrete orbits/energies permitted

when atom makes a transition between 2 states, gives up
energy corresponding to the difference

- discrete amounts of energy only (photons)
AE = Efpgl - Einitias = hv (h = Planck’s constant, 6.6 x 10-%7
erg sec)

* types of transition
- collisional excitation/de-excitation AE = $mv?
- radiative absorption + spontaneous emission; stimulated emission

photon energy « radiation frequency (color)
AE = hv = hc/A

e.g. for & = 70004, E o100 ~ 2 €V (leV = 1.6 x 1012 ergs)
- very low energy
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atromic aecay +

absorption of photon emission

photon

055 o

hv = Eupper = Elower

AYA®S
3 radiative processes ,\'\’,\\:

« photon absorption
- spontaneous decay w/ emission of photon
* stimulated emission -

excited state of

— additional photon

2 collisional processes
e collisional excitation
« collisional de-excitation

AE = Eq;pot - Einivit = hv (radiation) OR = 1/2 mv? (collisional)
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Hydrogen Atom

Adopt Bohr atom assuming quantization of angular
momentum (only integral multiples of h/2n — L=nh/2r)

Energy levels are E, = -(ue*/32n2€_h/2n)1/n? = -c/n?
c= constant
Principal quantum number n: in ground state n=1
E;=-2.18 x 1018 J = -13.6 eV = constant
- E,=-13.6 eV/n?

For electron in ground state 13.6 eV needed to ionize atom
In first excited state E = -13.6/4 = -3.4 eV (more energy)
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Balmer Lines and Rydberg constant

Spectral lines of hydrogen at 6563A (Ho), 4861A (HB),
43404 (Hy), 4102A (H3) = Balmer series

Experiment: wavelengths given by 1/i = R,,(1/4 -1/n?)
R, = Rydberg constant = 1.097 x 10° cms; n= 3, 4,...

Bohr semi-classical approach: photon of energy AE is
emitted (or absorbed) when electron makes transition
from orbit n to m

AE = E, -E,,
she/)=-13.6 eV (1/m? -1/n2) with m < n
=1/ = Ry(1/m? -1/n?)
Balmer series, m=2,n=3 - Ha, n=4 - Hp ...
Lyman series m=1, n=2 — Lya, n=3 — Ly} ...

Paschen series m=3, n=4 — Pao.... s



Transitions of Hydrogen Atom

5. Radiation Mechanisms
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Kirchhoff's laws revisited

Hot dense gas (or opaque solid) emits continuous spectrum of
radiation described by Planck function, B,(T) or B (T)

Hot diffuse (low density) gas produces bright emission lines
when an electron makes a downward transition from higher
to lower orbit. Energy lost = hv or hc/A.

Cool diffuse gas in front of a source of continuous radiation
produces dark absorption lines in the continuous spectrum
when an electron makes an upward transition to a higher
orbit. The incident photon from continuous spectrum must
have exactly the right energy (equal to the difference in
energy between the lower and upper orbit), to be absorbed
by an atom.
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Spectra of 7 stars w/ different surface temperatures
650 nm 400 nm
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TABLE 8.1 Harvard Spectral Classification.

Spectral Type

Characteristics

0]

" i

Hottest blue-white stars with few lines
Strong He II absorption (sometimes emission) lines.
He I absorption lines becoming stronger.

Hot blue-white
He I absorption lines strongest at B2.
H I (Balmer) absorption lines becoming stronger.

White
Balmer absorption lines strongest at AQ, becoming weaker later.
Ca II absorption lines becoming stronger.

Yellow-white
Ca II lines continue to strengthen as Balmer lines continue to weaken.
Neutral metal absorption lines (Fe I, Cr I).

Yellow

Solar-type spectra.

Ca II lines continue becoming stronger.

Fe I, other neutral metal lines becoming stronger.

Cool orange
Ca IT H and K lines strongest at KO, becoming weaker later.
Spectra dominated by metal absorption lines.

Cool red

Spectra dominated by molecular absorption bands,
especially titanium oxide (TiO) and vanadium oxide (VO).

Neutral metal absorption lines remain strong.

Very cool, dark red

Stronger in infrared than visible.

Strong molecular absorption bands of metal hydrides (CrH, FeH), water
(H,0), carbon monoxide (CO), and alkali metals (Na, K, Rb, Cs).

TiO and VO are weakening.

Coolest, Infrared
Strong methane (CH;) bands but weakening CO bands.

S and C spectral types for evolved giant stars are discussed on page 466.
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The Harvard Lady Computers

Annie Jump Cannon



FARLY(Q) = La (M=)

8.1 The Formation of Spectral Lines ﬂ — q 205

TABLE 8.1 Harvard Spectral Classification.
Spectral Type  Characteristics

0,000 0] Hottest blue-white stars with few lines uLTIALY |
e _ ONIZEP
2cioce kK Strong He II absorption (sometimes emission) lines. .:‘.Taﬁs , el , Nl
He I absorption lines becoming stronger. siyY
L&, cock B Hot blue-white ©
He I absorption lines strongest at B2. Ho30oA

H I (Balmer) absorption lines becoming stronger. € all W

. ®q - no HeX
q, cock A Wl -
Balmer absorption lines strongest at AQ, becoming weaker later.
Ca II absorption lines becoming stronger.

Z, Cce K F Ycllow:-whitc _
Ca II lines continue to strengthen as Balmer lines continue to weaken.
Neutral metal absorption lines (Fe I, Cr I). sowae Tc il
5, 8cclk G Yellow

Solar-lmm spectra. _
ines continue becoming stronger. S‘bﬂgmk ak GO

Fe I, other neutral metal lines becoming stronger.

{000k K Cool orange
Ca Il H and K lines strongest at K0, becoming weaker later.
Spectra dominated by metal absorption lines. K5 -~ TcO baols

3, 0o M Cool red
Spectra dominated by molecular absorption bands,
especially titanium oxide (TiO) and vanadium oxide (VO).

‘ Neutral metal absorption lines remain strong.
» L Very cool, dark red
Coolar Stronger in infrared than visible.

Strong molecular absorption bands of metal hydrides (CrH, FeH), water
(H,0), carbon monoxide (CO), and alkali metals (Na, K, Rb, Cs).
TiO and VO are weakening.

T Coolest, Infrared
Strong methane (CHs) bands but weakening_CO bands.
S and C spectral types for evolved giant stars are discussed on page 466.
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Chapter 8 The Classification of Stellar Spectra
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FIGURES8.2 Stellar spectra for main-sequence classes O9—F5. Note that these spectra are displa
as negatives; absorption lines appear bright. Wavelengths are given in angstroms. (Figure from A

et al., An Atlas of Low-Dispersion Grating Stellar Spectra, Kitt Peak National Observatory, Tucs
AZ. 1968.)



8.1 The Formation of Spectral Lines
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FIGURES8.3 Stellar spectra for main-sequence classes F5-MS5. Note that these spectra are displayed
as negatives; absorption lines appear bright. Wavelengths are given in angstroms. (Figure from Abt,
et al., An Atlas of Low-Dispersion Grating Stellar Spectra, Kitt Peak National Observatory, Tucson,

AZ.1968.)
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Spectral Types of Stars — temperature sequence

Surface temperature
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Spectra of stars differ due to electrons in different
atomic orbitals at different temperatures

Lines from ionized species, molecules also present
HeTI, HI, Cal etc = neutral hydrogen, helium, calcium
HIT, HeIl = singly ionized hydrogen, helium: 1 electron "lost
SIII, SIV = ionized silicon: 2 and 3 electrons "“lost"

n

Balmer lines peak in strength at AO, T, = 9250K

at lower temperatures harder to excite hydrogen
at higher temperatures ionization is beginning

HeI lines most intense in B2 stars T, = 22,000K
CIT lines most intense in KO stars T,= 5250K

Example spectra show peak of Planck function moving to
shorter A as T, increases

Strong H absorption in A stars — “"knee" in UBV diagram
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Negrest stars Brightest stars

10,000 *Rigel Betelgeuse,
- Vega Mira ,
g 100 " Arcturus,
: [Sirius ‘" i
i ; < Centaurl
— L ]
g Sun
E 0.01L " Sirius B
3
Barmnard's Star,
tadd . Proxima Centauri,
30,000 10,000 6000 3000
Surface Temperature (K)
A ¢ NN

Spectral classification
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Refining spectral classification further

L - 4TCR*2T64
. stars of same T, have different L if R« is different

gravitational acceleration g ~ GM/R?
. stars of same mass may have different surface gravities
p and P in stellar atmosphere are different

— Yerkes or MKK (Morgan, Keenan, Kellman) system
Ia most luminous supergiants
Ib less Luminous supergiants
IT  luminous giants
ITTI normal stars
IV  subgiants
V' mainsequence stars
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