AY 20 Fall 2010 Electromagnetic Radiation and the Properties of Stars Reading: Carroll & Ostlie, Chapter 3 #### Physical constants | Symbol | Description | SI | | , cgs | | |-----------------------|---------------------------|-------------|-------------------------|-------------|---| | + | | Value | Unit | Value | Unit | | С | Speed of light | 2.9979 (8) | m s ⁻¹ | 2.9979 (10) | cm ⁻¹ s ⁻¹ | | h | Planck's constant | 6.6261(-34) | Js | 6.6261(-27) | | | k | Boltzmann's constant | 1.3807(-23) | J/K | 1.3807(-16) | | | $\sigma_{ extsf{SB}}$ | Stefan-Boltzmann constant | 5.6704 (-8) | $\dot{W}~m^{-2}~K^{-4}$ | 5.6704 (-5) | erg s^{-1} cm ⁻² K ⁻⁴ | | G | Gravitational constant | 6.674 (-11) | $N\ m^{-2}\ kg^{-2}$ | 6.674 (-8) | $\rm dyn~cm^{-2}~g^{-2}$ | | N_{A} | Avogadro's constant | 6.0221 (23) | mol^{-1} | 6.0221 (23) | mol^{-1} | | m_e | Electron rest mass | 9.1094(-31) | kg | 9.1094(-28) | g | | $m_{\rm p}$ | Proton rest mass | 1.6726(-27) | kg | 1.6726(-24) | | | $m_{\rm u}$ | Atomic mass unit | 1.6605(-27) | kg | 1.6605(-24) | | | e | Electron charge | 1.602 (-19) | C | 4.803(-10) | esu | | α | Fine-structure constant | 7.2974 (-3) | | 7.2974 (-3) | | Values $a \times 10^b$ are given as a(b). Astronomical constants | Symbol | Description | SI | | cgs | | |-------------------|-----------------------------|-------------|---------------------|-------------|---| | | | Value | Unit | Value | Unit | | AU | Astronomical unit | 1.496 (11) | m | 1.496 (13) | cm | | ly | Light year | 9.463 (15) | m | 9.463 (17) | cm | | рс | Parsec | 3.086 (16) | m | 3.086 (18) | cm | | pc ² | Square parsec | 9.5234 (32) | m ² | 9.5234 (36) | cm ² | | kpc ² | Square kiloparsec | 9.5234 (38) | m ² | 9.5234 (42) | cm ² | | L _o | Solar luminosity | 3.85 (26) | $\dot{J} s^{-1}$ | 3.85 (33) | erg s ⁻¹ | | ${\rm M}_{\odot}$ | Solar mass | 1.989 (30) | kg | 1.989 (33) | g | | R_{\odot} | Solar radius | 6.96 (8) | m | 6.96 (10) | cm | | Γ_{\odot} | Solar effective temperature | 5.78 (3) | Κ . | 5.78 (3) | K | | Гу | Jansky | 1.00(-26) | $W m^{-2} H z^{-1}$ | 1.00(-23) | erg s ⁻¹ cm ⁻² Hz ⁻¹ | Values $a \times 10^b$ are given as a(b). #### Stellar Properties From measurements of radiation at visible wavelengths: ``` stellar motions \sqrt{} brightness distance "temperature" brightness B = L/4\pid², L = luminosity (ergs/sec), d= distance to star B measured in magnitudes m_1 - m_2 = 2.5 \log b_2 / b_1 each factor 100 in brightness = 5^m ``` #### Stellar Properties From measurements of radiation at visible wavelengths: stellar motions √ brightness distance "temperature" Brightness, B measured in magnitudes $m_1 - m_2 = 2.5 \log b_2 / b_1$ each factor 100 in brightness = 5^m Need a brightness scale independent of distance Define Absolute Magnitude, M $\underline{M} = \underline{\text{magnitude of a star at a distance of 10 pc}}$ #### Flux and Brightness photometers measure radiant flux, F_{λ} = brightness F = amount of energy crossing unit area in unit time (ergs/cm²/sec) Luminosity = energy/sec from star = $4\pi d^2F$ (d= distance from star) $\therefore F = L/4\pi d^2$ i.e. $F \propto 1/d^2$ (inverse square law for light) Note: L is an intrinsic property of star Solar flux at earth, F_{\odot} = 4x $10^{33}/4\pi(1.5 \times 10^{13})^2 \sim 1.4 \times 10^6$ = solar constant (1.36 × 10^6 ergs/cm²/sec) #### Absolute magnitude → Distance Modulus M = magnitude of a star at a distance of 10 pc $$m_1 - m_2 = 2.5 \log b_2 / b_{1} = 2.5 \log F_2 / F_1 = -2.5 \log F_1 / F_2$$ For a star of luminosity L seen at distances d_1 and d_2 , $$F_1 = L/4\pi d_1^2$$ and $F_2 = L/4\pi d_2^2$ $$m_1 - m_2 = -2.5 \log F_1/F_2 = -2.5 \log (d_2/d_1)^2$$ Let m be observed magnitude of the star at distance d pc $$\therefore$$ m- M = -2.5log(10/d)² $$\therefore$$ m-M = 5logd - 5 or, $$d = 10^{[(m-M+5)/5]} pc$$ L and M are intrinsic to star F and m affected by distance #### Luminosity and Absolute Magnitude Relation For the Sun: m = -26.8 and d= 1 AU $$m-M = 5logd - 5 \\ \therefore M_{\odot} = -26.8 + 5 - 5log(1.5 \times 10^{13})/(3.1 \times 10^{18}) \\ = -26.8 + 5 - 5log(5 \times 10^{-6}) = -21.8 + 5 - 3.5 + 30 = 4.7 (4.74) \\ \therefore \text{ for Sun, distance modulus} = 4.7 + 26.8 = 31.5 \\ F = L/4\pi d^2 \\ \therefore F_1/F_2 = L_1/L_2, \text{ for 2 stars at same distance} \\ \therefore m_1 - m_2 = -2.5log F_1/F_2 = -2.5log L_1/L_2 \\ \therefore M_* - M_{\odot} = -2.5log L_*/L_{\odot}, \\ \text{with } M_{\odot} = 4.7 \text{ and } L_{\odot} = 3.9 \times 10^{33} \text{ ergs}$$ ## Spectroscopic Parallax: ``` distance modulus +stellar spectrum \rightarrow distance to star Spectral type (later) \rightarrow M_{\lambda} Observation \rightarrow m_{\lambda} m_{\lambda} - M_{\lambda} = 5logd -5 ``` # Bolometric Magnitude: star (black body) emits radiation across wide range of λ bolometric magnitude measured over all emitting wavelengths $m_{bol} \mbox{ and } M_{bol}$ #### **Blackbody Radiation** Continuous emission spectrum from a blackbody Peak emission wavelength, $\lambda_{max,}$ varies with temperature T of B-B λ_{max} decreases with increasing T Wien's law (empirical) $\lambda_{max} = 0.0029/T (\lambda \text{ m; } T \text{ °K})$ $OR \ \lambda_{max} T = 0.29 \text{ K } (\lambda \text{ cm})$ peak of curve \rightarrow surface temp cooler objects are redder #### Spectra of blackbody sources #### Betelgeuse (Alpha Orionis) $T_{surface}$ = 3600 K spectral type M d ~ 140 pc R ~ 660 R_{\odot} 0.45 x 10⁴L_{\odot} < L > 1.5 x 10⁴ L_{\odot} ## Rigel (Beta Orionis) $T_{surface}$ = 11,000 K spectral type B8 d = 260 pc R ~ 60 R_{\odot} L ~ 3.9 x 10⁴ L_{\odot} ## Vega (Alpha Lyrae) T = 9500 K spectral type AO d ~ 70 pc #### Blackbody Radiation cont'd Relative flux density in arbitrary units - At all wavelengths, emission/sec increases with increasing T - Stefan (empirically): $F = \sigma T^4$ ∴ $L = A\sigma T^4$ (A = surface area of B-B) $\sigma = 5.67 \times 10^{-5} \text{ ergs/sec/cm}^2/\text{K}^4$ (Boltzmann) Stefan- Boltzmann equation: $L = A\sigma T^4$.. L= $4\pi R^2 \sigma T_e^4$ for a star of radius R (T_e = effective temperature of stellar surface) Page 6: $F \propto 1/d^2$ where d is distance from luminosity source At surface of star, d = R \therefore surface flux $F_{\text{surface}} = L/4\pi R^2$ $\therefore F_{\text{surface}} = \sigma T_e^4$ #### A Physical Basis for the B-B Radiation Curve? Rayleigh: $B_{\lambda}(T) \approx 2ckT/\lambda^4$ k = Boltzmann's constant (PV = NkT) OK in radio; ultraviolet catastrophe as $\lambda \to 0$ Rayleigh-Jeans law: $B_{\lambda}(T) \approx 2ckT/\lambda^4$ for long λ Wien's law: $B_{\lambda}(T) \approx a\lambda^{-5}e^{-b/\lambda kT}$ for short λ a, b, constants; fit experimental data Planck (1900): assumed standing wave of wavelength λ & frequency $v = c/\lambda$ could acquire only integral values of some minimum energy (quantum), hv or hc/λ h = Planck's constant = 6.6×10^{-27} erg sec $$B_{\lambda}(T) = 2h \frac{c^2}{\lambda^5} \left(e^{hc/\lambda kT} - 1\right)^{-1}$$ B measured in W m⁻² m⁻¹ steradian⁻¹ or ergs s⁻¹ cm⁻² cm⁻¹ sr⁻¹ ## Deriving laws from Planck function Can express Planck function in terms of frequency. Use $$B_v dv = -B_\lambda d\lambda$$ and $v = c/\lambda$, $d\lambda/dv = -c/v^2$ $$B_v = -B_\lambda (d\lambda/dv) = B_\lambda (c/v^2)$$ $$B_{\nu}(T) = 2h \frac{v^3}{c^2} (e^{h\nu/kT} - 1)^{-1}$$ Integrating $B_v(T)$ with x = hv/kT and dv = (kT/h)dx, Total intensity, B(T) = $(2k^4T^4/c^2h^3).(\pi^4/15) = AT^4$ For isotropic radiation, $F = \pi B$: $F = \sigma T^4$ ≡Stefan Boltzmann Law $\sigma = \pi A = 5.67 \times 10^{-5} \text{ ergs/sec/cm}^2/\text{K}^{-4}$ Can also derive Wein and Rayleigh-Jeans approximations # Planck Function relates star's observed properties (F, magnitude) to intrinsic (R, T) e.g. model star, radius R, temp T Each small patch of surface, dA, emits isotropically outwards Energy emitted/sec between λ and λ + $d\lambda$ into solid angle $d\Omega$ = $B_{\lambda}(T)d\lambda dA\cos\theta d\Omega$ = $B_{\lambda}(T)d\lambda dA\cos\theta\sin\theta d\theta d\phi$ \therefore Total energy/sec emitted between λ , λ + $d\lambda$ = $L_{\lambda}d\lambda$ = monochromatic luminosity = $$\pi 4\pi R^2 B_{\lambda} d\lambda = 4\pi^2 R^2 B_{\lambda} d\lambda$$ angular integration area of sphere • $$L_{\lambda}d\lambda = 4\pi^2R^2B_{\lambda}d\lambda$$ - $\therefore L = 4\pi^2 R^2 \int B_{\lambda}(T) d\lambda$ over all wavelengths - but L= $4\pi R^2 \sigma T_e^4$ (Stefan-Boltzmann page 13) - $\therefore \int B_{\lambda}(T)d\lambda = \sigma T_e^4/\pi$ (limits of integration 0 to ∞) - Monochromatic flux = $F_{\lambda}d\lambda$ = $L_{\lambda}/4\pi^{2}r^{2}d\lambda$, r = distance to star \therefore Flat is energy of starlight (in joules) with wavelength between λ and λ +d λ arriving/sec at 1 sq meter of detector In practice, flux measured over limited wavelength ranges using filters Define sensitivity function, S_{λ} = fraction of stellar flux detected at λ (affected by mirror reflectivity, bandwidth, detector response...) $$: F = \int F_{\lambda} S_{\lambda} d\lambda$$ Bandwidth: filters confine range of λ observed ## Flux Density Measurements for Vega ### Color Index - Define Color Index: - U-B = $M_U M_B$ or B-V = $M_B M_V$ etc - Recall Wien Law: $\lambda_{max}T = 0.29$ - i.e. λ_{max} measures stellar temperature - Relative values of $M_U M_B M_V$ also indicate temperature - e.g. *smaller* B-V = bluer = hotter