AY 20

Fall 2010

Electromagnetic Radiation and the Properties of Stars

Reading: Carroll & Ostlie, Chapter 3

Physical constants

Symbol	Description	SI		, cgs	
+		Value	Unit	Value	Unit
С	Speed of light	2.9979 (8)	m s ⁻¹	2.9979 (10)	cm ⁻¹ s ⁻¹
h	Planck's constant	6.6261(-34)	Js	6.6261(-27)	
k	Boltzmann's constant	1.3807(-23)	J/K	1.3807(-16)	
$\sigma_{ extsf{SB}}$	Stefan-Boltzmann constant	5.6704 (-8)	$\dot{W}~m^{-2}~K^{-4}$	5.6704 (-5)	erg s^{-1} cm ⁻² K ⁻⁴
G	Gravitational constant	6.674 (-11)	$N\ m^{-2}\ kg^{-2}$	6.674 (-8)	$\rm dyn~cm^{-2}~g^{-2}$
N_{A}	Avogadro's constant	6.0221 (23)	mol^{-1}	6.0221 (23)	mol^{-1}
m_e	Electron rest mass	9.1094(-31)	kg	9.1094(-28)	g
$m_{\rm p}$	Proton rest mass	1.6726(-27)	kg	1.6726(-24)	
$m_{\rm u}$	Atomic mass unit	1.6605(-27)	kg	1.6605(-24)	
e	Electron charge	1.602 (-19)	C	4.803(-10)	esu
α	Fine-structure constant	7.2974 (-3)		7.2974 (-3)	

Values $a \times 10^b$ are given as a(b).

Astronomical constants

Symbol	Description	SI		cgs	
		Value	Unit	Value	Unit
AU	Astronomical unit	1.496 (11)	m	1.496 (13)	cm
ly	Light year	9.463 (15)	m	9.463 (17)	cm
рс	Parsec	3.086 (16)	m	3.086 (18)	cm
pc ²	Square parsec	9.5234 (32)	m ²	9.5234 (36)	cm ²
kpc ²	Square kiloparsec	9.5234 (38)	m ²	9.5234 (42)	cm ²
L _o	Solar luminosity	3.85 (26)	$\dot{J} s^{-1}$	3.85 (33)	erg s ⁻¹
${\rm M}_{\odot}$	Solar mass	1.989 (30)	kg	1.989 (33)	g
R_{\odot}	Solar radius	6.96 (8)	m	6.96 (10)	cm
Γ_{\odot}	Solar effective temperature	5.78 (3)	Κ .	5.78 (3)	K
Гу	Jansky	1.00(-26)	$W m^{-2} H z^{-1}$	1.00(-23)	erg s ⁻¹ cm ⁻² Hz ⁻¹

Values $a \times 10^b$ are given as a(b).

Stellar Properties

From measurements of radiation at visible wavelengths:

```
stellar motions \sqrt{}
brightness
distance
"temperature"

brightness B = L/4\pid<sup>2</sup>, L = luminosity (ergs/sec), d= distance to star
B measured in magnitudes
m_1 - m_2 = 2.5 \log b_2 / b_1
each factor 100 in brightness = 5<sup>m</sup>
```


Stellar Properties

From measurements of radiation at visible wavelengths: stellar motions √
brightness
distance
"temperature"

Brightness, B measured in magnitudes $m_1 - m_2 = 2.5 \log b_2 / b_1$ each factor 100 in brightness = 5^m

Need a brightness scale independent of distance

Define Absolute Magnitude, M $\underline{M} = \underline{\text{magnitude of a star at a distance of 10 pc}}$

Flux and Brightness

photometers measure radiant flux, F_{λ} = brightness

F = amount of energy crossing unit area in unit time (ergs/cm²/sec)

Luminosity = energy/sec from star = $4\pi d^2F$ (d= distance from star) $\therefore F = L/4\pi d^2$

i.e. $F \propto 1/d^2$ (inverse square law for light)

Note: L is an intrinsic property of star

Solar flux at earth, F_{\odot} = 4x $10^{33}/4\pi(1.5 \times 10^{13})^2 \sim 1.4 \times 10^6$ = solar constant (1.36 × 10^6 ergs/cm²/sec)

Absolute magnitude → Distance Modulus

M = magnitude of a star at a distance of 10 pc

$$m_1 - m_2 = 2.5 \log b_2 / b_{1} = 2.5 \log F_2 / F_1 = -2.5 \log F_1 / F_2$$

For a star of luminosity L seen at distances d_1 and d_2 ,

$$F_1 = L/4\pi d_1^2$$
 and $F_2 = L/4\pi d_2^2$

$$m_1 - m_2 = -2.5 \log F_1/F_2 = -2.5 \log (d_2/d_1)^2$$

Let m be observed magnitude of the star at distance d pc

$$\therefore$$
 m- M = -2.5log(10/d)²

$$\therefore$$
 m-M = 5logd - 5

or,
$$d = 10^{[(m-M+5)/5]} pc$$

L and M are intrinsic to star

F and m affected by distance

Luminosity and Absolute Magnitude Relation

For the Sun: m = -26.8 and d= 1 AU
$$m-M = 5logd - 5 \\ \therefore M_{\odot} = -26.8 + 5 - 5log(1.5 \times 10^{13})/(3.1 \times 10^{18}) \\ = -26.8 + 5 - 5log(5 \times 10^{-6}) = -21.8 + 5 - 3.5 + 30 = 4.7 (4.74) \\ \therefore \text{ for Sun, distance modulus} = 4.7 + 26.8 = 31.5 \\ F = L/4\pi d^2 \\ \therefore F_1/F_2 = L_1/L_2, \text{ for 2 stars at same distance} \\ \therefore m_1 - m_2 = -2.5log F_1/F_2 = -2.5log L_1/L_2 \\ \therefore M_* - M_{\odot} = -2.5log L_*/L_{\odot}, \\ \text{with } M_{\odot} = 4.7 \text{ and } L_{\odot} = 3.9 \times 10^{33} \text{ ergs}$$

Spectroscopic Parallax:

```
distance modulus +stellar spectrum \rightarrow distance to star Spectral type (later) \rightarrow M_{\lambda} Observation \rightarrow m_{\lambda} m_{\lambda} - M_{\lambda} = 5logd -5
```

Bolometric Magnitude:

star (black body) emits radiation across wide range of λ bolometric magnitude measured over all emitting wavelengths $m_{bol} \mbox{ and } M_{bol}$

Blackbody Radiation

Continuous emission spectrum from a blackbody Peak emission wavelength, $\lambda_{max,}$ varies with temperature T of B-B λ_{max} decreases with increasing T

Wien's law (empirical) $\lambda_{max} = 0.0029/T (\lambda \text{ m; } T \text{ °K})$ $OR \ \lambda_{max} T = 0.29 \text{ K } (\lambda \text{ cm})$ peak of curve \rightarrow surface temp cooler objects are redder

Spectra of blackbody sources

Betelgeuse (Alpha Orionis)

 $T_{surface}$ = 3600 K spectral type M d ~ 140 pc R ~ 660 R_{\odot} 0.45 x 10⁴L_{\odot} < L > 1.5 x 10⁴ L_{\odot}

Rigel (Beta Orionis)

 $T_{surface}$ = 11,000 K spectral type B8 d = 260 pc R ~ 60 R_{\odot} L ~ 3.9 x 10⁴ L_{\odot}

Vega (Alpha Lyrae)

T = 9500 K spectral type AO d ~ 70 pc

Blackbody Radiation cont'd

Relative flux density in arbitrary units

- At all wavelengths, emission/sec increases with increasing T
- Stefan (empirically): $F = \sigma T^4$ ∴ $L = A\sigma T^4$ (A = surface area of B-B) $\sigma = 5.67 \times 10^{-5} \text{ ergs/sec/cm}^2/\text{K}^4$ (Boltzmann) Stefan- Boltzmann equation: $L = A\sigma T^4$

.. L= $4\pi R^2 \sigma T_e^4$ for a star of radius R (T_e = effective temperature of stellar surface)

Page 6: $F \propto 1/d^2$ where d is distance from luminosity source

At surface of star, d = R \therefore surface flux $F_{\text{surface}} = L/4\pi R^2$ $\therefore F_{\text{surface}} = \sigma T_e^4$

A Physical Basis for the B-B Radiation Curve?

Rayleigh: $B_{\lambda}(T) \approx 2ckT/\lambda^4$ k = Boltzmann's constant (PV = NkT) OK in radio; ultraviolet catastrophe as $\lambda \to 0$

Rayleigh-Jeans law: $B_{\lambda}(T) \approx 2ckT/\lambda^4$ for long λ Wien's law: $B_{\lambda}(T) \approx a\lambda^{-5}e^{-b/\lambda kT}$ for short λ a, b, constants; fit experimental data

Planck (1900): assumed standing wave of wavelength λ & frequency $v = c/\lambda$ could acquire only integral values of some minimum energy (quantum), hv or hc/λ

h = Planck's constant = 6.6×10^{-27} erg sec

$$B_{\lambda}(T) = 2h \frac{c^2}{\lambda^5} \left(e^{hc/\lambda kT} - 1\right)^{-1}$$

B measured in W m⁻² m⁻¹ steradian⁻¹ or ergs s⁻¹ cm⁻² cm⁻¹ sr⁻¹

Deriving laws from Planck function

Can express Planck function in terms of frequency.

Use
$$B_v dv = -B_\lambda d\lambda$$
 and $v = c/\lambda$, $d\lambda/dv = -c/v^2$

$$B_v = -B_\lambda (d\lambda/dv) = B_\lambda (c/v^2)$$

$$B_{\nu}(T) = 2h \frac{v^3}{c^2} (e^{h\nu/kT} - 1)^{-1}$$

Integrating $B_v(T)$ with x = hv/kT and dv = (kT/h)dx,

Total intensity, B(T) = $(2k^4T^4/c^2h^3).(\pi^4/15) = AT^4$

For isotropic radiation, $F = \pi B$: $F = \sigma T^4$

≡Stefan Boltzmann Law

 $\sigma = \pi A = 5.67 \times 10^{-5} \text{ ergs/sec/cm}^2/\text{K}^{-4}$

Can also derive Wein and Rayleigh-Jeans approximations

Planck Function relates star's observed properties (F, magnitude) to intrinsic (R, T)

e.g. model star, radius R, temp T

Each small patch of surface, dA, emits isotropically outwards

Energy emitted/sec between λ and λ + $d\lambda$ into solid angle $d\Omega$

= $B_{\lambda}(T)d\lambda dA\cos\theta d\Omega$

= $B_{\lambda}(T)d\lambda dA\cos\theta\sin\theta d\theta d\phi$

 \therefore Total energy/sec emitted between λ , λ + $d\lambda$

= $L_{\lambda}d\lambda$ = monochromatic luminosity

=
$$\pi 4\pi R^2 B_{\lambda} d\lambda = 4\pi^2 R^2 B_{\lambda} d\lambda$$

angular integration

area of sphere

•
$$L_{\lambda}d\lambda = 4\pi^2R^2B_{\lambda}d\lambda$$

- $\therefore L = 4\pi^2 R^2 \int B_{\lambda}(T) d\lambda$ over all wavelengths
- but L= $4\pi R^2 \sigma T_e^4$ (Stefan-Boltzmann page 13)
- $\therefore \int B_{\lambda}(T)d\lambda = \sigma T_e^4/\pi$ (limits of integration 0 to ∞)
- Monochromatic flux = $F_{\lambda}d\lambda$ = $L_{\lambda}/4\pi^{2}r^{2}d\lambda$, r = distance to star

 \therefore Flat is energy of starlight (in joules) with wavelength between λ and λ +d λ arriving/sec at 1 sq meter of detector

In practice, flux measured over limited wavelength ranges using filters

Define sensitivity function, S_{λ} = fraction of stellar flux detected at λ (affected by mirror reflectivity, bandwidth, detector response...)

$$: F = \int F_{\lambda} S_{\lambda} d\lambda$$

Bandwidth: filters confine range of λ observed

Flux Density Measurements for Vega

Color Index

- Define Color Index:
 - U-B = $M_U M_B$ or B-V = $M_B M_V$ etc
 - Recall Wien Law: $\lambda_{max}T = 0.29$
 - i.e. λ_{max} measures stellar temperature
- Relative values of $M_U M_B M_V$ also indicate temperature
 - e.g. *smaller* B-V = bluer = hotter