
AY 20                  Fall 2010

Rotation of the Milky Way

Reading: Carroll & Ostlie, Chapter 24.2, 24.3
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Last class:

Introduced galactic coord

 

system; defined Local Standard of Rest 
Cylindrical coord

 

system; origin at GC, R, θ,z                                           
Corresponding velocity components: П

 



 

dR/dt, Θ

 



 

dθ/dt

 

Z 

 

dz/dt
LSR is a point instantaneously centered on Sun and moving in a circular 

orbit along the solar circle about the Galactic Center
Velocity components: ПLSR

 



 

0, ΘLSR

 



 

Θ0 = Θ(R0

 

), ZLSR

 



 

0
Star’s peculiar motion u = П

 

–ПLSR

 

, v = Θ

 

–

 

ΘLSR,

 

= Θ

 

–

 

Θ0, w = Z –

 

ZLSR

Velocity for any star relative to Sun: ∆u 

 

u-

 

uʘ,

 

∆v v -

 

vʘ

 

, ∆w w -wʘ

uʘ

 

= -<

 

∆u >, vʘ

 

= <v> -

 

<

 

∆v >, wʘ

 

= -<

 

∆w>
Hence, uʘ

 

= -10 ±

 

0.4 km/s
vʘ

 

= 5.2 ±

 

0.6 km/s
wʘ

 

= 7.2 ±

 

0.4 km/s 
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The Rotation of the Milky Way 
•

 

Flatness of MW suggests

 

rotation about axis                      
perpendicular to plane

•

 

Observations of stars, gas confirm differential

 

rotation
•

 

i.e. Milky Way does not rotate like a rigid body
•

 

angular velocity depends on distance from GC
•

 

Observable effects of galactic rotation derived by Jan Oort
•

 

Sun shares in differential rotation –

 

has to be taken into account
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Implications of differential 
rotation: Oort’s

 
constants

Consider Sun and star orbiting GC
star at R, with orbital velocity Θ

Sun at R0 from GC, orbital velocity Θ0
= orbital velocity of LSR since perfectly 

circular motion about GC assumed
(Not unreasonable for Pop I stars and gas)

star at distance r from Sun, in dirn

 

of galactic longitude l
from Sun (i.e. observer’s perspective),

star has radial velocity, vr

 

, transverse velocity. vt



 

vr

 

= Θcosα

 

–

 

Θ0 sin l, and vt

 

= Θsinα

 

–

 

Θ0 cos

 

l


 

since angular velocity Ώ(R) 

 

Θ(R) /R
vr

 

= ΏR cosα

 

–

 

Ώ0

 

R0 sin l
vt

 

= ΏR sinα

 

–

 

Ώ0

 

R0

 

cos l
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We have vr

 

= ΏR cosα

 

–

 

Ώ0

 

R0 sin l
and  vt

 

= ΏR sinα

 

–

 

Ώ0

 

R0

 

cos l
sin

 

l = x/R0 and cosα

 

= x/R
R0

 

/R = cosα/sin

 

l and 

 

cosα

 

= R0 sin

 

l /R
cos

 

l

 

= (r+y)/R0

 

= (r + R sinα)/R0


 

sinα

 

= (R0

 

/R)cos

 

l – r/R

vr

 

= ΏR0 sin

 

l –

 

Ώ0

 

R0 sin l 

 

vr

 

= R0

 

(Ώ

 

-

 

Ώ0

 

) sinl

and vt

 

= Ώ(R0

 

cos

 

l – r) –

 

Ώ0

 

R0

 

cos l       vt

 

= R0

 

(Ώ

 

-

 

Ώ0

 

)cos l

 

-

 

Ώ

 

r
i.e. assuming circular symmetry, and R0

 

, l, and r known, can estimate  Ώ(R)

BUT: r not known well unless nearby or variable, R0 affected by extinction to GC

SO Oort

 

assumed Ώ(R) smoothly varying function of R
Taylor expansion of Ώ(R) about Ώ0

 

(R0) is:

x

y

00 0 0( ) ( ) | ( ) ...R
dR R R R
dR


     

00 | ( )R o
d R R
dR


 


and Ώ ≈ Ώ0
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Taylor expansion valid only near Sun where  r << R0

 

,  and R0

 

~ R
Since Ώ

 



 

Θ/R, can rewrite Taylor expansion:

Recall vr

 

= R0

 

(Ώ

 

-

 

Ώ0

 

) sin l, vt

 

= R0

 

(Ώ

 

-

 

Ώ0

 

) cos

 

l

 

-

 

Ώ

 

r

Define Oort’s

 

constants, A and B

vr

 

≈
 

Arsin2l 
Explains shear rate

= rate of change of angular speed of rotation with distance from

 

GC

0 0 0 02
0

1 ( ) ( )dR R R
R dR

      

0

0
0v | ( )sinr R

d R R l
dR R

     

0

0
0 0

0

v | ( ) cost R
d R R l r
dR R

 
    
 

0 0

0 01 1
2 2

0 0

| , |R R
d dA B
dR R dR R

     
        

   
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Since vr

 

≈
 

Arsin
 

2l,
observer (at Sun) sees different relative velocities

For l

 

= 0°

 

or 180°; vr

 

= 0, no motion in line of sight
For l

 

= 90°

 

or 270°; vr

 

= 0, motion on solar circle
For l

 

= 45°; vr

 

+ve, star closer to GC, overtaking Sun
For l

 

= 135°; vr

 

-ve, star lagging behind Sun
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vt

 

= Arcos2l
 

+ Br, 
and proper motion

 

μ

 

= vt

 

/r

μ
 

= Acos2l+B

wwwwwwwwwwwwwwwwwwwwwwwwww
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Hence A if r known


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Implications: relating A,B to R0

 

,Θ0

 

,Ώ0

 

=Θ0

 

/R, dΘ/dR)R0

We have 

Thus  A -

 

B = Θ0

 

/R0 = Ώ0

 

and A+B = dΘ/dR|R0

A = 14.8 km/sec/kpc

 

and B = -12.4 km/sec/kpc


 

Rotation Period = 2π/Ώ0

= 2π

 

x 3 x 1021/27.2 x105

 

x 3 x 107

 

~ 2/9 x 109

 

yrs ~ 250 Myrs


 

Rotation period for solar neighborhood

 

stars ~ 250 Myrs
Angular velocity of LSR around GC ~ 0.0053“/year

But Taylor expansion not appropriate for studying large scale

 structure of Galaxy 
Best probe = 21 cm HI line (not affected by I/S dust) –

 

due to 
hyperfine structure in ground state of H atom

Can be several and separate clouds in line of sight 
Use properties of differential rotation to determine distances

0 0

0 01 1
2 2

0 0

| , |R R
d dA B
dR R dR R

     
        

   
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Due to differential rotation, 
clouds on different orbits have 
different velocities

vr

 

= R0

 

(Ώ

 

-

 

Ώ0

 

) sinl
vr

 

increases until point where vr

 
is maximum = R0

 

(Ώ

 

-

 

Ώ0

 

) 
Rk

 

is minimum distance from GC
r = R0

 

cosl

 

at that point
No HI measures of vmax

 

possible 
for 90°

 

< l

 

< 270
Also, non-circular motions within 

20°

 

of GC 
Have to use other methods        

e.g. Cepheids

 

in plane
CO(1-0) rotational transition
(fewer CO clouds in line of sight) 

etc,

wwwwwwwwwwwwwwwwwwwwwwwwwwww

 
wwwwwwwwwwwwwwwwwwwwwwwwwwww

 
wwwwwwwwwwwwwwww
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Results of 21cm mapping 
suggest spiral structure

But significant gaps 
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Rotation Curve for Milky Way Galaxy also obtained               
= plot of rotation speed as function of galactocentric

 
radius
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•

 

Very central part of Galaxy rotates like a rigid body, Θ

 



 

R 
•

 

(Since Ώ

 

= Θ/R is constant, all stars have same orbital period)
•

 

For centrally concentrated mass, Θ

 



 

R-½

 

-Keplerian

 

rotation
•

 

No fall-off in Θ

 

observed, suggesting substantial mass beyond R0

•

 

(note: most luminosity inside  R0

 

) 
•

 

Similar rotation curves for other galaxies

wwwwwwwww

CO data  here are older
Rotation curve remains 
approx constant beyond R0



Recall: force on a star of mass m due to a mass Mr

 

interior to star’s 
position is given by mV2/r = GMr

 

m/r2

 

(spherical symm

 

holds)
Mr

 

= V2r/G and dMr

 

/dr

 

=V2/G
Mass conservation equation:  dMr

 

/dr

 

= 4πr2ρ


 

ρ(r) = V2/ 4πr2 G  

 

ρ(r) 

 

r-2

But density of stars in halo 

 

r-3.5

Rapid drop off of stellar density suggests most of galaxy mass is non-

 
luminous dark matter

Flat rotation curves extending 
to large radii imply unexpected 
matter density distributions
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At the Galactic Center

Exotic radio source Sgr

 

A*
From radio maser spots, size < 100 AU
Av > 30 but K, M giants detected at 

2.2μm (Andrea Ghez

 

et al. UCLA)
Motions of stars indicate central mass: 
e.g. star SO-2, P = 15,2 yrs, e= 0.87, 

perigalact

 

distance = 120 AU
semi-major axis aS2

 

= rperihelion

 

/(1-e)           
~ 1.4 x 1014

 

m
M = 4π2a3

S2

 

/GP2

 

~ 3.7 x 106Mʘ

 
(Kepler’s

 

3rd)
SUPER MASSIVE BLACK HOLE
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