AY 20

Fall 2010

Stellar Clusters, Pulsating Stars

Milky Way Structure & Morphology

Reading: Carroll & Ostlie, Chapter 13.3, 14.1, 24.1, 24.2

Nearest Example of a Galaxy: our Milky Way

- In our Galaxy, star clusters can probe age and distance
 Other distance indicators: variable stars
 classical Cepheids, RR Lyrae stars
- Last class: main sequence and post-main sequence evolution result of nuclear burning (i.e. change of μ)
- Recall Vogt-Russell: star's mass and composition structure uniquely determine L, $r(T_{eff})$ and subsequent evolution
 - e.g. convective/radiative core + convective envelope OR convective core radiative envelope
- Mass and composition also influence end states e.g. white dwarfs, supernovae, pulsars, neutron stars, black holes

- Star formation: collapse process leads to fragmentation
- Fragmentation \rightarrow simultaneous formation of multiple stars
- Star cluster = group of stars with common properties
 - > Same distance
 - > Same age
 - > Same composition
- .: different evolutionary states of cluster members due only to different masses
 - Ignoring binarity, rotation, magnetic fields
- Last class: time for newly-formed stars to reach main sequence is a function of mass (e.g. NGC 2264)
- Lifetime of stars on main-sequence also a function of mass
- Over time, turn-off point from main-sequence occurs at lower $T_{\rm eff}$ (redder color) and lower L
 - \cdot \rightarrow estimate of cluster age from turn-off point

Theoretical H-R diagrams—evolution of a star cluster

Seeds: Horizons, 1995 ed., Fig. 10-19; Foundations of Astronomy, 1994 ed., Fig. 12-17

© 1994 Wadsworth, Inc.

FIGURE 13.18 A color-magnitude diagram for the young double galactic cluster, h and χ Persei. Note that the most massive stars are pulling away from the main sequence while the low-mass stars in the middle of the diagram are still contracting onto the main sequence. Red giants are present in the moner right-hand corner of the diagram. (Figure adapted from Wildey, *Ap. J. Suppl.*, 8, 439, 1964.)

Figure 9.9. The evolution of stars of different masses away from the main sequence. (Adapted from Icko Iben. Ann. Rev. Astr. Apr., 5, 1967, 571)

Ages of clusters

FIGURE 13.18 A color-magnitude diagram for the young double galactic cluster, h and χ Persei. Note that the most massive stars are pulling away from the main sequence while the low-mass stars in the middle of the diagram are still contracting onto the main sequence. Red giants are present in the more right-hand corner of the diagram. (Figure adapted from Wildey, Ap. J. Suppl., 8, 439, 1964.)

Adaptation of original figure by Alan Sandage

- Galactic clusters ("open" clusters) 10's to 100's stars
- Nuclear time scales, t_N longer for decreasing M*
- Older clusters have existed long enough for low mass stars to burn most H, leave main sequence
- ∴turn-off point → age of cluster
- Here NGC 2362 youngest; M67 oldest
- Note y-axis: M_V need cluster distances to compare ages

Pleiades

 $h & \chi Persei$

Cluster distance measurement

Here stars in NGC 2362 on main sequence between A and A' have same $T_{\rm eff}$ as stars in Praesepe between B and B'

 \therefore A-A' stars and B-B' stars are of similar spectral type i.e. similar stars \therefore differences in m_v must be due to distance differences

Magnitude of vertical shift to "match" A-A' and B-B' main sequences

= distance measurement

observed my - my + av

" My,0 = my-av

SiNCE MV10 - MV = 5 logd - 5

MV10 = (MV + distance modelus)

· PLOT OF Myo U. B-V

E DISTANCE MODULUS DIFFERENCE

(STARS HAVE SIMILAR MV, B-V)

.. VERTICAL DIFFERENCE = 5 logd, - 5 logd2

IF dI KNOWN -> dz

STANDARD' USUALLY HYADES d ~ 400c

FROM HIPPARCOS satellite

Recall other distance measures:

- trigonometric parallax accurate up to ~ 1 kpc e.g. Hyades from Hipparcos = 47 pc
- Main sequence fitting based on Hyades \rightarrow distances accurate to \sim 7 kpc (but Galactic Center at 8 kpc)
- Method also used for greater distances (Magellanic Clouds at 50 pc) but less accurate
- More accurate distance measurements use pulsating variable stars Cepheids (extragalactic distance scale)
- Cepheids supergiants; cyclic variations in magnitude as star expands and contracts
- Period between 1 and 50 days, variations of several magnitudes in brightness

4.1 Observations of Pulsating Stars

FIGURE 14.7 Observed pulsation properties of δ Cephei, a typical classical Cepheid. (Data from Schwarzschild, *Harvard College Observatory Circular*, 431, 1938.)

Recall other distance measures:

trigonometric parallax - accurate up to ~ 1 kpc e.g. Hyades from Hipparcos = 47 pc

Main sequence fitting based on Hyades known distance

→ distances accurate to ~ 7 kpc (but Galactic Center at 8 kpc)

Method also used for greater distances (Magellanic Clouds at ~ 50 kpc)

More accurate distance measurements use pulsating variable stars - particularly Cepheids (extragalactic distance scale)

Cepheids - supergiants;

cyclic variations in magnitude as star expands and contracts

Period between 1 and 50 days; brightness variations ~ several

magnitudes

Henrietta Leavitt: $L_* \sim P_* \sim m_v$; $m_v \sim M_V$ (since all in Small Magellanic Cloud i.e. at same distance)

i.e. for Cepheids, periods \rightarrow absolute magnitude \rightarrow distance BUT need calibration = independent distance measurement to ONE Cepheid variable

Period-Luminosity Relation for Classical Cepheids

Nearest Cepheid is Polaris @ \sim 200 pc - simple parallax methods inaccurate until Hipparcos space mission

However, Hertzsprung (1913) used secular parallax method for distances to Cepehids with same period \rightarrow

$$M_{V} = -2.81 \log P_d - 1.43$$

or $\log L / L_0 = 1.15 \log P_d + 2.47$

Now Cepheids = "standard candles" for extragalactic distance measures too

12

- Leavitt relation empirical. Eddington theory: $P \propto \langle \rho \rangle^{-1/2}$
 - $MV \sim L^* \sim R^* \text{ and } <\rho>^{-1/2} \sim P$

FIGURE 14.8 Pulsating stars on the H–R diagram. (Data for the evolutionary tracks from Schaet al., Astron. Astrophys. Suppl., 96, 269, 1992.)

TABLE 14.1 Pulsating Stars. (Adopted from Cox, *The Theory of Stellar Pulsation*, Princeton University Press, Princeton, NJ, 1980.)

Туре	Range of Periods	Population Type	Radial or Nonradial
Long-Period Variables	100-700 days	I,II	R
Classical Cepheids	1-50 days	I	R
W Virginis stars	2-45 days	II	R
RR Lyrae stars	1.5-24 hours	II	R
δ Scuti stars	1-3 hours	I	R.NR
β Cephei stars	3-7 hours	I	R.NR
ZZ Ceti stars	100-1000 seconds	I	NR

Distances from variable stars in globular clusters

Omega Centauri Spitzer image (infrared)

Figure 9.13. Schematic H-R diagram of the globular cluster M3. The distance to the cluster has been derived on the assumption that the luminosity of the RR Lyrae stars is $50L_{\odot}$. The diagram is somewhat schematic, because the conversion from the B-V and V measurements of Johnson and Sandage to T_e and L is somewhat uncertain for Population II stars. (Adapted from H. L. Johnson and A. R. Sandage, Ap. J., 124, 1956, 379.)

GLOBULAR

- -POPI STARS
- OLD TURN-OFF PT . → 1.2 × 10 10 YEARS
- ~ AGE OF MILKY WAY GALAXY

RR Lyrae stars (cluster variables) lie on horizontal branch

DETERMINATIONS
OF DISTANCE TO
GALACTIC CENTER
(GC)

Note: P_{RRLyrae} ≤ 1 day « P_{Cepheid}

ON HORIZONTAL BRANCH : L, My ~ CONST
~ 0.6± 0.3

*5logd = my - My + 5

Again need to be aware of extractor (especially in plane of Galaxy)

Figure 15-14 Chain of overlapping distance indicators

FABLE 27.1 Distance Indicators. (Adapted from Jacoby et al., Publ. Astron. Soc. Pac., 104, 599 1992.)

Method	Uncertainty for Single Galaxy (mag)	Distance to Virgo Cluster (Mpc)	Range (Mpc)
Cepheids	0.16	15 - 25	29
Novae	0.4	21.1 ± 3.9	20
Planetary nebula luminosity function	0.3	15.4 ± 1.1	50
Globular cluster luminosity function	0.4	18.8 ± 3.8	50
Surface brightness fluctuations	0.3	15.9 ± 0.9	50
Tully-Fisher relation	0.4	15.8 ± 1.5	> 100
D - σ relation	0.5	16.8 ± 2.4	> 100
Type Ia supernovae	0.10	19.4 ± 5.0	> 1000

CLUSTERS PROBE GALAXY STRUCTURE

CATEGORIES: POPULATION I & II

(DIFFERENT KINEMATICS)

DIFFERENT CHEMICALY)

13.7 × 109 YRS AGO. BIG BANG HYDROGEN, HELIUM ONLY, Z=0 NEXT STARS (AFTER STELLAR NUCLEOSYNTHESIS) METAL POOR, LOW Z LATER GENERATIONS, METAL RICH Z=0.03

로-0 로 20 로~0.03

POPULATION III

エエ

LOCATED LOW VELOCITIES
OUT OF PLANE, (RELATIVE TO SUN)
HIGHER VELS DISK OF MILKY WAY

LED TO ORIGINAL DEFINITION OF POP I POPI

GLOBULAR CLUSTERS - LARGE WEMBERSHIP
POPULATION II

FORMED WHEN GALAXY YOUNG (" OLD)

GALACTIC CLUSTERS - OPEN CLUSTERS
POPULATION I (MORE RECENT
YOUNGER & SMALLER NUMBERS &S

GLOBULAR CLUSTERS ARE POPULOUS - MANY OLDER STARS [POPIL

SUN AND MANY POPI STARS ARE:

NOT IN CLUSTERS
BUT FORM IN CLUSTERS

WHERE ESCAPE PROBABILITY
13 HIGH : DISPERSE EASILY

STELLAR SEPARATION >> STELLAR DIAMETER

STARS 'ORBIT' CLUSTER CENTER

TO CENTER RANDOM MOTION OTHER STARS

VIRIAL => 2K +U=0 IF STABLE

N STARS, AVE. SEPER, RANDOM VEL V

MASS M

(N(N-1) MASS M

(N(N-1) MASS)

FOR I STAR, ESCAPE VELOCITY FROM

\[\frac{1}{2} m v_e^2 = \frac{G(N-1) m.m}{R}

= 2 m V^2

= Ue = 4V2

FOR GALACTIC CLUSTERS THAN - 3×10° YES
GLOBULAR CLUSTERS THAN - 8×10° YES
-LAST LONGER