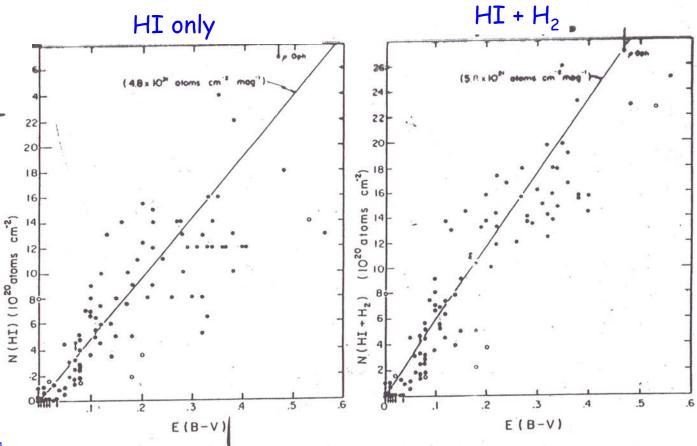
AY 20

Fall 2010

Interstellar Gas Formation of Stars


Reading: Carroll & Ostlie, Chapter 12.1, 12.3

From last class

In ISM, dust mass ~ 1/100 gas mass Nevertheless, extinction mainly due to dust = many non-spherical particles graphite or silicate cores with icy mantles, PAHs sizes ~ few x 0.1 μ m \rightarrow Å scales (PAHS)

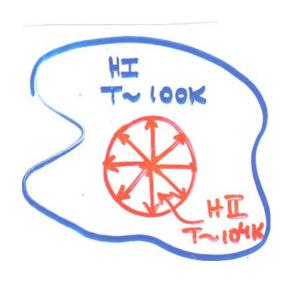
ISM principally hydrogen, HI, H2, HII Diffuse HI clouds detected from 21 cm line observations Absorption at 21cm due to spin-flip transition in H atom $\tau_{\text{HI}} \propto N_{\text{HI}}$ in optically thin case and $A_{\text{V}} \sim \tau_{\text{dust}} \propto N_{\text{dust}}$ Plots of N_{HI} versus A_{V} show good correlation N_{HI} ,& $N_{\text{dust}} \rightarrow gas$ and dust well mixed for $A_{\text{V}} < 3 \rightarrow galaxy$ structure

Column density of hydrogen correlates with A_v (or $E_{\rm B-V}$)

N_{dust} from UV spectra

Figure 2 Correlations between gas column densities and interstellar reddening for 100 stars from the Copernicus atomic and molecular hydrogen survey (Savage et al. 1977, Bohlin, Savage & Drake 1978):

(a) shows the atomic hydrogen column density, N(H1), versus E(B-V), (b) shows the total hydrogen column density, N(H1+H₂) = N(H1)+2N(H₂), versus E(B-V). Be stars are denoted with the open symbols. The solid line in (a) gives the average atomic hydrogen to E(B-V) ratio 4.8×10^{21} atoms cm⁻² mag⁻¹. In (b) the solid line gives the average total hydrogen to E(B-V) ratio of 5.8×10^{21} atoms cm⁻² mag⁻¹. The point for ρ Oph in (a) and (b) should be moved upward by about a factor of 2.7.


UV radiation (λ < 912 Å) from O and B stars ionizes HI
Central star temperatures required > 30,000K
Recombination lines when protons, free electrons
recombine to excited state
photons of different energies emitted in cascade to
ground state

n = $3\rightarrow 2$ transition dominates i.e. H α (6565 Å) \therefore emission from HII regions is red

Lagoon nebula in Sagittarius

Size of HII regions

Massive star embedded in dense H_2 cloud stellar UV photons dissociate H_2 , ionize HI simultaneously, electrons, protons recombine \rightarrow more HI

Each ionization removes a photon from beam & star has fixed possible UV photon output

∴ size of region ionized is limited

For uniform density, ionization spreads isotropically, filling a sphere

 \rightarrow Strömgren sphere

Require that ionization balance holds at each location within sphere

i.e. ionization rate for any parcel of gas = recombination rate of protons and electrons in same parcel

Also, ionization rate = rate at which ionizing photons emitted by star = N_* (recall: ionizing photons have energy > 13.6 eV; i.e. λ < 912Å)

For stars with spectral types 04 to B2, masses 70 to 10 M_{\odot} , values of log N* vary from 49.9 to 44.8/sec ⁵

Determining the Strömgren radius

Ionization balance requirement:

Number of UV photons/unit time/unit volume = Number of recombinations /unit time /unit volume

And number of recombinations /unit time /unit volume \propto number density of electrons x number density of atoms

= $\alpha n_e n_p$ (where α is recombination coefficient = probability of recombining)

∴
$$N_*/4/3 \pi r^3 = \alpha n_e n_p = \alpha n_e^2$$

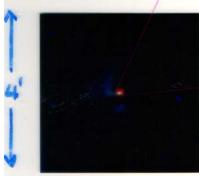
∴ $r^3 = 3N_*/4 \pi \alpha \times n_e^{-2/3}$

∴ Strömgren radius,
$$R_{\rm S} = \left(\frac{3N_*}{4\pi\alpha}\right)^{\frac{1}{3}} n_e^{-\frac{2}{3}}$$

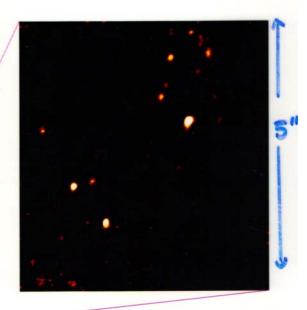
VERY DRAMATIC BOUNDARY!

```
CONSIDER AN OBSTAR, Teff ~ 45,000K, L=1.3 ×105Lo
                  -: \ max = 0.29/Teff = 29×10 2×10 A0
                         = 3/5 × 103 Å ~ 600 Å (660Å)
                 LOTS OF X<912A PHOTONS -> IONIZATION
                 AT 660 A, EACH PHOTON HAS ENERGY EX = hey
                         = 6.6 × 10-27 × 3 × 1010 ~ 20ev
                  LET EY = AVERAGE ENERGY/PHOTON
                 $ NUMBER OF LOWIZING PHOTONS = N . L/EX
                       "N= 1.3×105×4×1033 ergs ~1.6×1049
Need to evaluate \rightarrow
                  SIZE OF STRÖMGREN SPHERE, RS
                                        = (3N) 1/3 nH
   For HII region
                 a = 3.1×10-13 cm3 5-1 AND Me ~ 100 cm3
                   - Rs = (3 × 1.6 × 1044 ) 13 (100) -2/3. 1 pc
                       ~ (160 ) × (1060) 1/3 × 102
```

at 8000K


"Rs= 3.5 x 3.1 x 1018/1,5 x 1013 AU

Stars form in molecular clouds (H_2)


A Nursery for Stars

This optical photograph from the Palomar Oschin telescope shows many young stars clustered around an opaque black area in the constellation of Serpens. Such dark areas are usually not empty sky. Instead, they represent dense dust condensations where new stars are likely to form. The large quantities of dust prevent the light emitted by any embedded stars from reaching us.

By contrast, an image of the same region, taken by NASA's Infrared Astronomical Satellite (IRAS) reveals the presence of a strong source of infrared radiation. Optical radiation from newly-born stars is absorbed by the surrounding dust particles but readiated by them at infrared wavelengths. The intense infrared emission from the Serpens core is a signpost that a number of young stars are present.

The Owens Valley millimeter array image provides a much more detailed picture of star formation activity in the very heart of the Serpens infrared region. The image above shows the emission that dust particles emit at a wavelength of 3 mm. Each bright region indicates the presence of a dense dust clump that is either about to form a star, prestellar, or already harbors a star nucleus, protostellar. We can count at least 26 such clumps. Most exciting from an astronomer's point of view - the number of clumps per given mass conforms to the same pattern as that expected for isolated stars. We are viewing the fragmentation of a single core to create a cluster of infant stars:

STILL A MAJOR PROBLEM FOR 21 TCENTURY

HOW DO STARS AND PLANETS FORM?

NEED TO CONNECT THEORY
AND DESERVATION

THEORY:

STARS ARE BORN FROM GRAVITATIONAL CONTRACTION OF INTERSTELLAR CLOUDS

CONTRACTION - GRAVITATIONAL ENERGY

THERMAL ENERGY RADIATIVE

AN OCCUR - NUCLEAR ENERGY

PROTO - STAR

OBSERVATIONS:

STELLAR BIRTH MOSTLY OBSCURED IN HIGH AV, MOLECULAR CLOUDS

OPTICAL: INFERENCES FROM SCATTERED

INFRARED : INFERENCES FROM DUST

& MILLIMETER DIRECT OBSERVATIONS

DUST, GAS - SOMETIMES

NEAR IR STARS

WHAT ARE CONDITIONS FOR CORE COLLAPSE?

FROM VIRIAL THEOREM 2K+U=0 FOR A STABLE, GRAVITATIONALLY BOUND SYSTEM (K = INTERNAL KINETIC ENERGY, U = GRAVITATIONAL POTENTIAL ENERGY)

IF 2K > UI, GAS PRESSURE - EXPANSION

IF 2K < U GRAVITATIONAL -> COLLAPSE FORCE DOMINATES

RECALL $U = -\frac{3}{5} \frac{GMc^2}{Re}$ where Mc = cloud wass Re = cloud radius Re = cloud radius

"FOR COLLAPSE 3Mc KT < 3 GMc RT < 3 GMc RT

for constant density po, Re = (3Me) 1/3 " KT < GMc (4TTpo) 13 & 5KT < (4TTpo) 1/3 Me8

FOR COLLAPSE, Mc MUST BE AT LEAST SOME TH ZZAM MUMINIM

 $M_{3} = \left(\frac{5kT}{GUMU}\right)^{3/2} \left(\frac{3}{4\Pi_{e_0}}\right)^{1/2}$ = Jeans Mass

Jeans Criterion: for collapse $M_c > M_T$

Jeans Criterion also applies to cloud size

FOR COLLAPSE RC > RJ , JEANS LENGTH

C= = 5.46

EXAMPLES

$$M_{3} = (\frac{5kT}{G\mu m_{H}})^{3/2} (\frac{3}{4\pi})^{1/2}$$
 $m_{0} \sim 2 \times 10^{33} \text{ gms} : p_{0} = m_{H} m_{H}$
 $(m_{H} = \# \text{ aloms}/\text{cm}^{2})$
 $\Rightarrow p_{0} = 1.7 \times 10^{-24} m_{H}$
 $M_{3} = (\frac{5 \times 1.38 \times 10^{-16}}{6.67 \times 10^{-24}})^{1/2} (\frac{3}{4\pi})^{1/2}$
 $\times \frac{1}{2 \times 10^{33}} (\frac{1.7 \times 10^{24}}{1.7 \times 10^{24}})^{1/2} \sqrt{\frac{13}{m_{H}}}$
 $\times \frac{1}{2 \times 10^{33}} (\frac{1.7 \times 10^{24}}{1.7 \times 10^{24}})^{1/2} \sqrt{\frac{13}{m_{H}}}$
 $\times \frac{1}{2 \times 10^{33}} (\frac{1.7 \times 10^{24}}{1.7 \times 10^{24}})^{1/2} \sqrt{\frac{13}{m_{H}}}$

FOR A DIFFUSE HI CLOUD: $T = 100K$
 $M_{3} = 30 \times (\frac{10^{6}}{20})^{1/2} \times \frac{1}{3} = 30 \times 10^{3} M_{0}$
 $M_{1} = 30 \times (\frac{10^{6}}{10^{8}})^{1/2} \times \frac{1}{3} \times 10^{3} M_{0}$
 $M_{2} = 30 \times (\frac{10^{6}}{10^{8}})^{1/2} \times \frac{3}{3} M_{0}$
 $M_{3} = 30 \times (\frac{10^{6}}{10^{8}})^{1/2} \times \frac{3}{3} M_{0}$

Eyptical core mass $\sim 10 - 100 M_{0} \Rightarrow \text{collapse}$

COLLAPSE TIME - SCALE

- · IF My < McLOUD → COLLAPSE
- . IF CLOUD OFTICALLY THIN, GRAVITATIONAL ENERGY RADIATED AWAY -> NO TEMPERATURE CHANGE
- PRESSURE GRADIENT TOO SHALL TO
 PREVENT/RESIST COLLAPSE : dP/dr << GHTP
 .: ISOTHERMAL, FREE-FALL COLLAPSE

RECALL DERIVATION OF EQUN. HYDROSTATIC EQUIL"

My = MASS INTERIOR TO + = ENCLOSED HASS AT ONSET OF COLLAPSE

" VELOCITY "AT SURFACE, +," OF COLLAPSING "SPHERE"

CARROLL & OSTLIE P. 415 -> TO INTEGRATE dr . - [31 6 00 6 (-1)] 12 SET 6 . 1/4. K . (8 TGp.) 1/2 . do/dt = -K (-1) 12 SET G: cos2 & > cos2 & dx = - K . 3 + 1 sin 2 = K++ C2 WHEN t=0, +=+0, G=1, 7=0 . C2 = 0 "GRAVITATIONAL COLLAPSE OF CLOUD GIVEN BA: \$/2 + 1/2 sm 2 } = Kt FREE-FALL TIME - TIME WHEN TO i.e. 0 = 0 AND 7 = 17/2 " +tt = 11/2K = [311/3500] 15

DYNAMICAL TIME- SCALE - FREE FALL TIME

= Eff = [3T] 1/2

GPO] 1/2

.. tff INDEPENDENT OF RADIUS OF INITIAL SPHERE. FOR UNIFORM DENSITY, ALL PARTS OF CLOUD TAKE SAME TIME TO COLLARSE HONOLOGOUS COLLAPSE

NOTE: HOMOLOGOUS COLLAPSE THE OR [GOD] 2

ALL PARTS OF CLOUD COLLAPSE AT SAME RATE

(NO RADIAL DEPENDENCE)

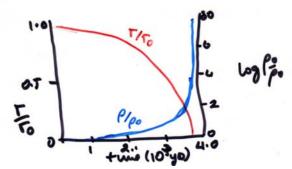
DENSITY INCREASES AT SAME RATE THROUGHOUT

BUT INITIALLY DENSITY MUST BE UNIFORM

E.g. SOMEWHAT CENTRALLY CONDENSED

-> INSIDE-OUT COLLAPSE

TYPICAL TIME-SCALES FOR HOMOLOGOUS


ASSUME
$$T = 10 \text{ K M}_{H_2} \sim 10^{10} \text{ m}^{-3}$$
, $\rho_0 = 2 \text{ M}_H \text{ M}_{H_2}$
FOR n_{H_2} , $\mu = 2$

$$th = \left[\frac{317}{32} \frac{1}{6\rho_0} \right]^{\frac{1}{2}} = \left[\frac{317}{32} \frac{1}{6.7 \times 10^{-17} \times 3 \times 10^{-17}} \right]^{\frac{1}{2}}$$

$$= 10^{13} \left(\frac{317}{6.7} \right)^{\frac{1}{2}} \sim \frac{3}{2.5} \times 10^{13} \text{ secs} = \frac{3 \times 10^{13}}{3 \times 2.5 \times 10^{7}} \text{ m}$$

$$th = 4 \times 10^{5} \text{ yrs}$$

Numerical solution for homologous collapse

LOWER LIMIT TO MASS OF FRAGMENTS?

Us : - 3 GH2

HENERGY RADIATED AWAY DURING COLLAPSE : & Ug

=Let = 10 E TO GRAVITE CONTRACTION

po = 3M = 36 M8/2 = 36 R (32GMx3) 12

" Ftt ~ 6315 W2/5

not quite thermodynamic equilibrium

FOR OPTICALLY THICK CLOUD LRAD LITTE TIE

ADTABAME 6~0

THERMODYNAMIC EQUILIBRIUM E~ !

IF LRAD = Lff , 4TTR20T4e = G36H3/2

" MS/2 = 411 R 9/2 COT" =

Gara R EXPRESS INTERMS OF PO, MJ,

MINIMUM SEANS MASS

FRAGMENTATION CEASES AT ~0.5 Mg

(ASSUME ADIABATIC EFFECTS BEGIN

STAR FORMATION : CLOUD COLLAPSE diameter

- 1. MOLECULAR CLOUD Ma 1000 Mg Da 10pc
- 2. CLOUD CONTRACTS ALL HEAT RADIATED

 DENSITY INCREASES, My DECREASES

 ISOTHERHAL

 RECALL My & (T3/p) 1/2

 COLLAPSE

3. PROBABLY INITIAL DENSITY INHOROGENITIES

SECTIONS OF CLOUD INDEPENDENTLY
HAVE M > M3 LOCALLY

i.e. FOR LOWER R5

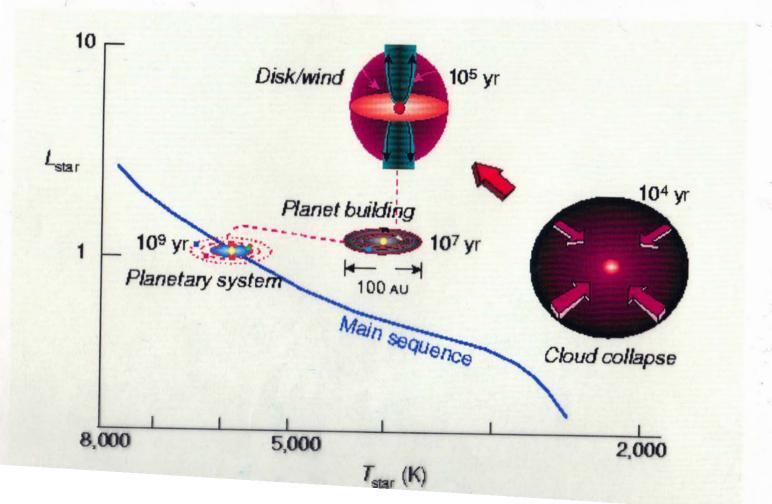
DOCAL COLLAPSE CENTERS

FRACHENTATION > MULTIPLE STARS CAN FORM

- 4. DENSITY INCREASES IN EACH FRAGMENT UNTIL OPTICALLY THICK - NO ENERGY (RADE) THEN ESCAPES E ADIABATIC COLLAPSE
- 5. SINCE NO ESCAPE OF RADIATION TEMPERATURE BEGINS TO INCREASE

FOR SAME P, MJ INCREASES

RECALL My = (5kT) 3k/ 3 1/2


FOR ADIABATIC COLLARGE T & p (38-4)/2

.: My & p (38-3)/2/pt/2 .. My & p (38-4)/2

FOR MY 8 = 5/3 -> My & p /2

HYDROGEN

pre-main sequence evolution and planetary system formation

