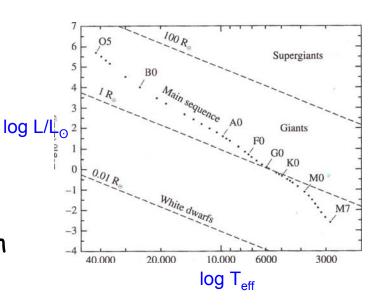
AY 20

Fall 2010

Stellar Interiors The SUN

Reading: Carroll & Ostlie, Chapter §10.6, Chapter 11

Stellar structure equations, constitutive relations, plus boundary conditions:


→Vogt & Russell theorem stellar composition & mass uniquely determine radius, luminosity, internal structure

Changes in composition
$$(X, Y, Z)$$
 due to nuclear burning \rightarrow changes to μ

pp chain, CNO cycle are slow → slow composition changes; most stars have similar composition

 \therefore Smooth change of structure with mass As M increases, P_c , T_c increase* \rightarrow pp chain in low mass stars, CNO in high From theoretical models \rightarrow HR diagram H-burning stars lie on main sequence Main sequence \equiv mass sequence

$$\operatorname{recall} \frac{dP}{dr} P = -\frac{GM_{r}\rho}{r^{2}}, \therefore P_{c} = \frac{GM_{*}\rho}{R_{*}}$$
and
$$P = \frac{\rho kT}{\mu m_{H}}, \therefore T_{c} = \frac{P_{c}\mu m_{H}}{\rho k}$$

Implications for main sequence stars

$$5 \times 10^{-4} L_{\odot} < L_{\star} < 1 \times 10^{6} L_{\odot}$$

 $0.08 M_{\odot} < M_{\star} < 90 M_{\odot}$
 $2700 K < T_{eff} < 53,000 K$

radiation from higher mass stars >> from lower mass stars

- \rightarrow reserves of fuel used faster; lifetimes of higher mass stars shorter spectra change with T_{eff} and hence with M_{\star}
- → <u>spectral type (O B A F G K M) appropriate abscissa for H-R diagram</u> convection zones at different levels:

Upper m-s: CNO cycle; high T dependence; rapid change of ε with r → convection in H-burning core, radiation outside

As M_* decreases: T_c decreases; pp chain dominates; core becomes radiative At surface, T_{eff} decreases, κ increases \rightarrow convection

"Surface convection zone" increases in depth with decreasing mass; at 0.3 M_o stars are fully convective

Eddington Limit: at very high T, radiation pressure dominates P. M and L limited by hydrostatic equilibrium condition

$$L_{\rm ed}/L_{\odot} \approx 3.8 \times 10^4 \, \rm M/M_{\odot}$$

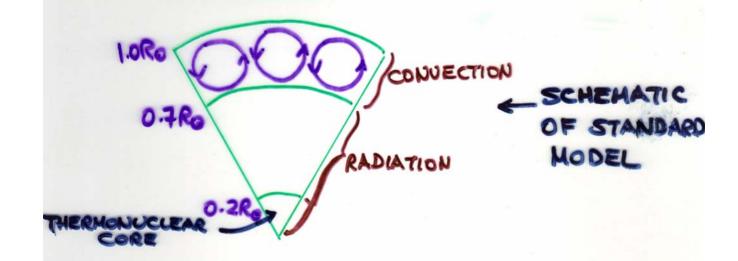
For main sequence stars: theoretical M_{\star} < $100M_{\odot}$; observed limit ~ $70M_{\odot}$

SUN - nearest example of a star

The Sun is a typical main sequence star. Its principal properties are:

```
= 1.989 \times 10^{30} \,\mathrm{kg}
mass
                                      R = 6.960 \times 10^8 \,\mathrm{m}
radius
                                            = 1409 \text{ kg m}^{-3}
mean density
                                      \rho_{\rm c} = 1.6 \times 10^5 \, {\rm kg \, m^{-3}}
central density
                                                                    ~4 × 1033 esgs/cm2/sp
                                           = 3.9 \times 10^{26} \,\mathrm{W}
luminosity
                                      T_{\rm e} = 5785 \, {\rm K}
effective temperature
central temperature
                                      T_c = 1.5 \times 10^7 \,\mathrm{K}
absolute bolometric magnitude M_{bol} = 4.72
absolute visual magnitude
                                      M_{\rm v} = 4.79
spectral class
                                              G2 V
colour indices
                                      B-V = 0.62
                                      U-B = 0.10
                                                        MASS FRACTIONS
surface chemical composition
                                      X = 0.71
                                       Y = 0.27
                                           = 0.02
rotational period
   at the equator
                                              25 d
   at 60° latitude
                                              29 d
```

 T_e and L \rightarrow G2V star on main sequence Composition has changed over 4.57 x 109 years but not much at surface. 99% of solar energy from pp chain within $\frac{1}{4}R_{\odot}$


Model of P, T, M, energy production as function of r based on above properties,

From observations

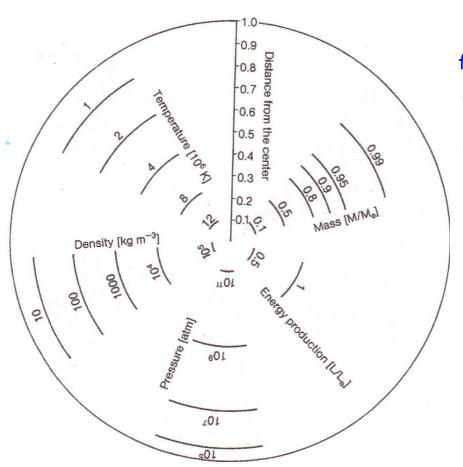
```
Direct measures → solar constant (energy/unit/time/unit area)
                           F_{\odot} =1.36 X 10<sup>6</sup> ergs/sec/cm<sup>2</sup>
\perp L = 4\pi d^2F = 4\pi \times (1AU)^2F = 4\pi \times 2.25 \times 10^{26} \times 1.36 \times 10^6
                              L_0 \sim 3.9 \times 10^{33} \text{ erg/sec}
Sun's diameter at Earth \sim 0.5^{\circ} = 32'
                   R_{\odot} = 1.5 \times 10^{13} \text{ tan}\theta = 6.96 \times 10^{10} \text{ cm}
For a blackbody L_0 = \sigma T_{eff}^4 4\pi R_0^2
T_{eff}^4 = 4 \times 10^{33} / 5.67 \times 10^{-5} \times 4\pi \times 6.96^2 \times 10^{20}
                        = 10^{18}/5.7 \times \pi \times 5 \times 10 \sim 10^{16}
                                      T_{eff} = 5800 \text{ K}
Mass from one body (earth) orbiting another (sun)
               M_{\odot} = 2 \times 10^{33} gms, and \langle \rho_{\odot} \rangle = 1.4 gm/cm<sup>2</sup>
```

ONE BODY ORBITING ANOTHER -> MASS DETERMINATION

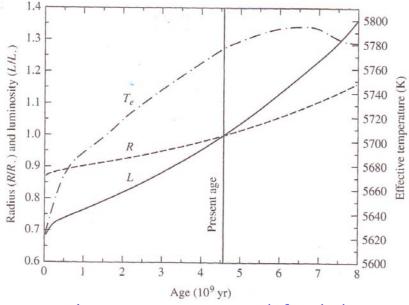
KNOW MASS & COMPOSITION ... CONSTRUCT STANDARD MODEL

ONE MODEL : DURING SUN'S LIFETIME

IN CORE X HAS DECREASED 0.71 - 0.34


Y " IN CREASED 0.27 - 0.64

AT SURFACE X INCREASE TO 0.73


COMPOSITION CHANGES -> CHANGES TO Ly, Rx, Teff

Sun: Model

Composition changes → evolution

from Bahcall et al 2001

Original composition modified due to
Nuclear burning
Surface convection
Settling of metals
As mass fractions change, µi, µn change
T, L, R change

MODELS OF SUN RELY ON SAME STRUCTURE
EQUATIONS, BOUNDARY CONDITIONS,
ITERATIVE INTEGRATION TECHNIQUES AS FOR
STARS

IN TERMS OF COMPOSITON

REGION	RADIAL SIZE	COMPOSITION
CORE	0.2 Ro	He H metalo 0.63035002 (almost conized)
RADIATIVE ZONE	0.5 Ro	0.23 0.75 0.02 (highly worried)
ZONE	0.3 Ro	X, Y, & same
PHOTO SPHERE	0.002Ro	44
SOLAR SURFA	CE 1.000RG	-
CHROMOSPHER	0.02 Ro	•
CORONA	25	same, highly conized

N.B. VISIBLE SURFACE - PHOTOSPHERE

- 300 - 500 km thick

AND T- 4500-8000K

dt fulfille convection conditions between sufface and ~0.7 Ro

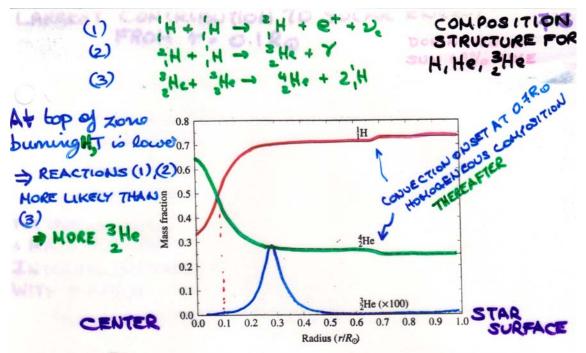


Figure 11.3 The abundances of ¹₁H, ³₂He, and ⁴₂He as a function of radius or the Sun. (Data from Guzik, private communication, 1994.) Bahcall of all 2001

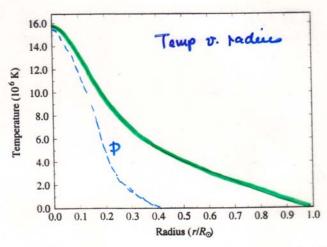
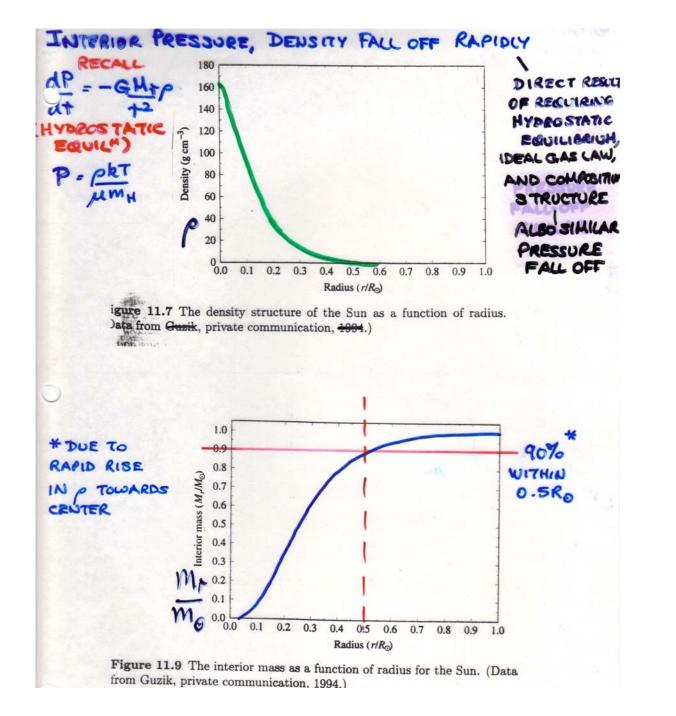
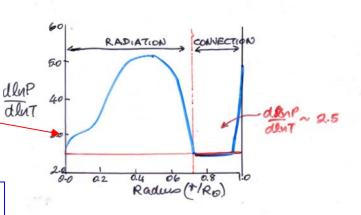



Figure 11.4 The temperature in the solar interior as a function of radius.

(Data from Gutik, private communication 1994). Balcall of al 2001

LARGEST CONTRIBUTION TO SOLAR ENERGY FROM TO O.IRO PECALL MASS CONSERVATION EQUN: 0.9 . dH+ = 411+2pd+ . MASS IN GIVEN INTERVAL INCREASES 2 WITH + AND P 0.0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Radius (r/R₀) Figure 11.5 The interior luminosity of the Sun as a function of radius. (Data from Guzik, private communication, 1994:) Bahcall 2001) nergy emitted will beak when 3.0 COMPARE W. 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Radius (r/Ra)

Figure 11.6 The derivative of the Sun's interior luminosity with respect to radius, showing the location of the greatest contribution to the energy output. (Data from Guzik, private communication, 1994.) Bahcall 2001)



How is energy transported out from interior?

In deep core, approaching convectiive transport

Model of Sun reproduces M. L, R, T, & surface compositions pretty well -also fits evolutionary timescales

BUT lithium abundance anomalously low →refine applications of convection, rotation, mass-loss

RECALL CONVECTION CRITERION

IN TEMP GRADIENT IS SUPERADIABATIC

- CONDITION FOR ONSET OF CONJECTION

.. ONSET OF CONVECTION AT += 0.714 Ro

IN OUTER REGIONS OPACITY HIGH, PREVENTS RADIATIVE TRANSPORT

ABOUT += 0.95 RO INVOKE MIXING LENGTH

TESTING THE STANDARD MODEL

MODEL PREDICTS NEUTRINO PRODUCTION

SHOULD DETECT Ve - LOW INTERACTION

X-SECTION

- SHOULD NOT BE IMPEDED

21'S TO PRODUCE 21 Ar (hay Lya 35 days)

**Cl + ve = 37 Ar +e- threshold energy 0.814 MeV

: 615,000 kg of cleaning fluid C2Cl4 tetrachlorethylene in 100,000 gallono in Homesteak Mine in South Dakota - Ray Davis

Most newhoros from PP III chaw B → Be + e+ + v (not frequent!)

TANK PURGED EVERY FEW MONTHS, ARGON ATOMS

CAPTURE RATE IN TERMS OF SNU - Solar newholo und / SNU = 10-36 Machons / taiget about sec

BAHCALL MODELS PREDICTED 7.95NU from 1990-94

DAVIS FOUND 2.56 ± 0.16

SUPER KAMIOKANDE, GALLEX AT GRAN SASSO
OTHER EXPERIMENTS

SIMILAR DISCREPANCIES

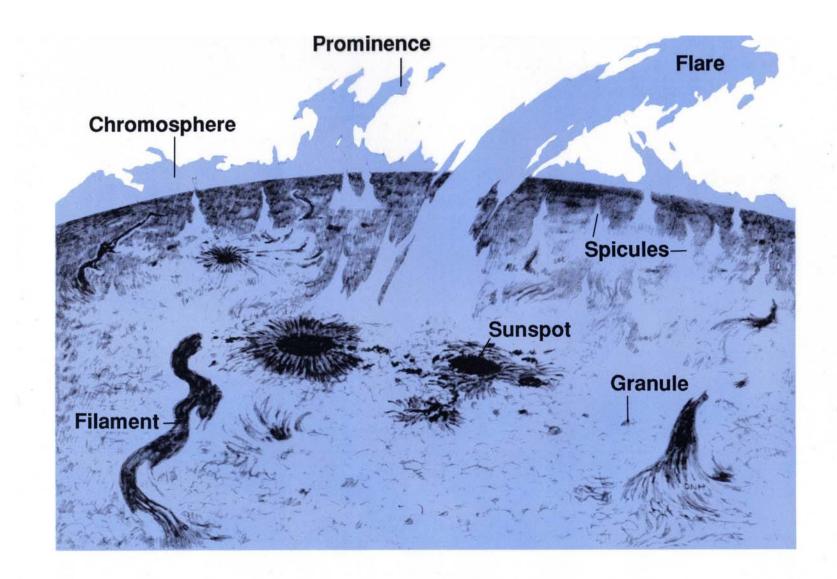
PHYSICAL PRINCIPLES IN SOLAR MODEL, E, X, X, Y, 2 et. et.

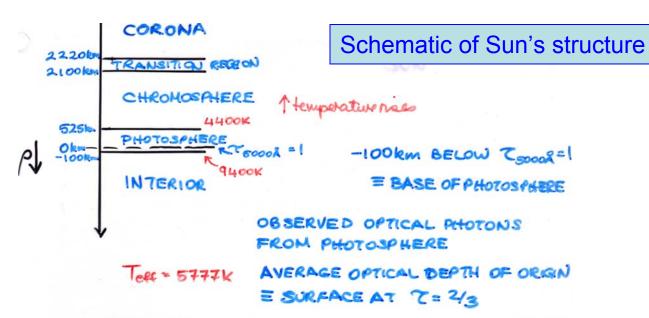
MSW Effect com explore.
MIKHEYEV - SMIRNOV - WOLFENSTEIN

THROUGH SUN (elechanical throng y particle physics)

pp chain -> Ve election neutrons

MSW effect -> rentimos oscillato among flavors due lection interactions more actions


election muon tous


1998 Superkamiokande group detected ν_{μ} 's consistent with MSW theory

All detectors senowhise only to v.

Suggests non zero neutronio massas

with m[v.) < m(v.) < m(v.)

OPTICAL DEPTH → EXPONENTIAL PALL- OFF OF INTENSITY IF ONLY 1% PHOTONS FROM SOME LEVEL REACH US, FALL OFF IS e-4.5 = 0.01 AND T = 4.5 IF 0.01% ARRIVE, T = 6.9 SINCE 0.001=2-6.9

Recall Planck - Like enusaion spectrum = BLACK BODY

CONSISTENT WITH CONTINUOUS SOURCE OF

OPACITY

- FROM H' IONS

PHOTONS WITH ENCY > X REFECT

" > CO.75 < 170,000

" FROM INFRARED TO LOWER

WANELENGTHS

3. CHROMOSPHERE

SEEN DURING ECLIPSE

P DECREASES (by 104)
T INCREASES 4400K - 25,000K
LINES CAN FORM - IN EMISSION

N~ 30,000 AT ANY TIME

TRANSITION REGION ~ 106K

TEMPERATURES => 1216 Å Ly d, 20,000K

REQUIRED

TO EXCITE 1032 Å OVI 300,000K

625 Å MgX 1.4×106K

CORONA

VISIBLE DURING TOTAL SOLAR ECLIPSE
10 ptclo /cms (FAINTER THAN
PHOTOSPHERE)

> e.g Fe X et.

DIFFUSE > SOLAR WIND TONS & ELECTRONS

AT EARTH, p~ 10 ptoles/cm3 AT 500 km/sec MASS LOSS RATE ~ 10-13 Mg/yor

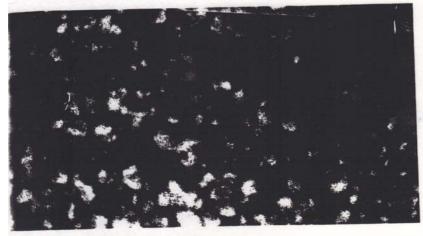
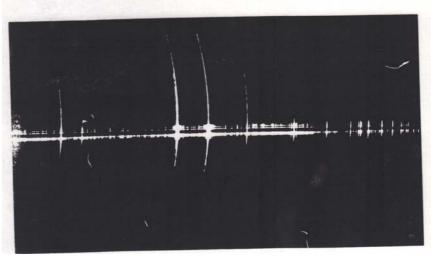



Fig. 13.3. The granulation of the olar surface. The granules are produced by streaming gas. Their typical diameter is 1000 km. (Photograph Mt. Wilson Observatory)

GRANULATION - EVIDENCE FOR CONVECTION

During eclipses, the chromospheric spectrum, called the flash spectrum, can be observed. It is an emission line spectrum with more than 3000 identified lines. Brightest among these are the lines of hydrogen, helium and certain metals.

One of the strongest chromospheric emission lines is the hydrogen Balmer α line (Fig. 13.5) at a wavelength of 656.3 nm. Since the H α line in the normal solar spectrum very dark absorption line, a photograph taken at this wavelength will show the chromosphere. For this purpose, one uses narrow-band filters letting through on the light in the H α line. The resulting pictures show the solar surface as a mottled, wavy disc. The bright regions are usually the size of a supergranule, and are bounded by spicules (Fig. 13.6). These are flamelike structures, rising up to 10 000 km above the

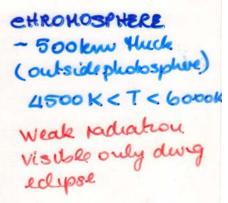
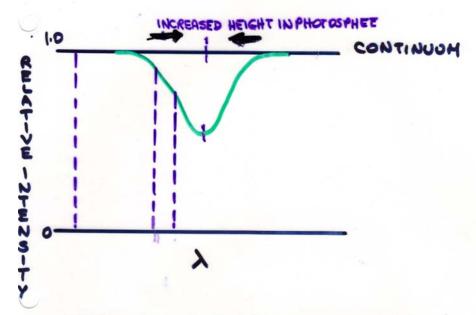
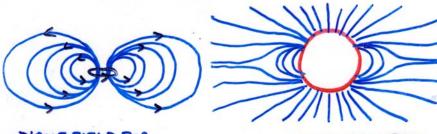



Fig. 13.4. Flash spectrum of the solar chromosphere, showing bright emission lines

SPECTRAL LINES VINDICATE SOLAR MODEL

· FRAUNHOFFER ABSORPTION SPECTROM PRODUCED IN PHOTOSPHERE


ABSORPTION PRODUCED IN REGIONS COOLER THAN
CONTINUUM - PRODUCTING LEVELS (KIRCHHOFF)

IN PRACTICE: IN SAME LEVELS
MIXTURE OF LINE FORMATION AND HE CONTINUUM

BUT CENTER OF LINE FROM HIGHER LEVELS OF PHOTOSPHERE (WHERE OPACITY HIGHEST) WHICH ARE COOLER

> IN WINGS OF LINE, EMISSION FROM DEEPER (EVENTUALLY FROM BASE OF PHOTOSPHERE)

DIPOLE FIELD FOR CURRENT LOOP

SUN'S MAGNETIC

- . CHARGED PARTICLES IONS/ELECTRONS
 SPIRAL AROUND FIELD LINES
- · OPEN LINES = WIND

SUN

TAILS ALWAYS
POINT AWAY FROM
SUN

LAWS]

COMETS - CURVED TAIL + STRAIGHT TAIL

STRAIGHT = CHARGED PARTICLES

[INTERACTING WITH IONS OF SOLAR WIND]

CURVED = DUST AT DIFFERENT DROTTAL

SPEEDS [KEPLER'S]

DUST PUSHED BACK BY RADIATION PRESSURE