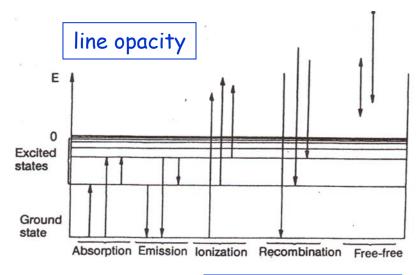
AY 20

Fall 2010

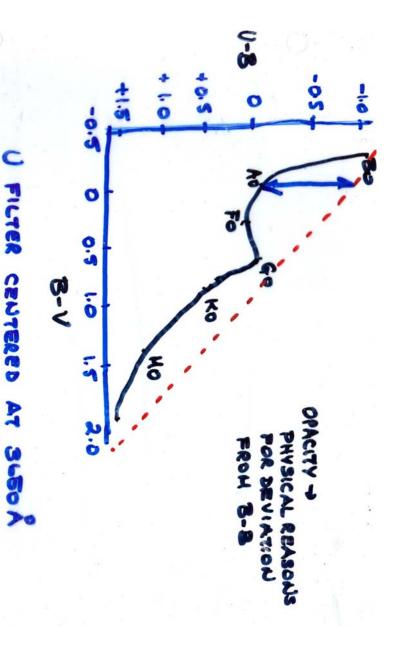

Stellar Atmospheres: Radiative Transfer

Reading: Carroll & Ostlie, Chapter 9.2, 9.3,9.4

Sources of Opacity: slowly varying affects continuum; rapid variations \rightarrow dark spectral lines

- 1. bound-bound transitions: photons "lost" to beam at discrete λs
- 2. free-free transitions: absorption & bremsstrahlung no preferred λ
- 3. bound-free transitions: photoionization* any photon w. λ < hc/ χ
- 4. electron scattering: Thompson scattering at high T, ρ ; also Compton or Rayleigh scattering
 - * photoionization of H^- ions important continuum opacity source in stars cooler than F0 B and A stars: continuum opacity from photoioniz. of H atoms or free-free absorption O stars: electron scattering and photoionization of He

Fig. 5.2. Different kinds of transitions between energy levels. Absorption and emission occur between two bound states, whereas ionization and recombination occur between a bound and a free state. Interaction of an atom with an free electron can result in a free-free transition


3

```
for parme ources E = - 13.6 = -3.4 eV
                                                                                                      "To somine / eject election, photon energy > 3.4eV
                                                                                                                                                                                                           Recall for envisy lewels of H.
                                                           Now I & help to some H in first excised (n=2) state
: > < 6.6 × 10-34 × 8 × 10 ~ 6 × 10-4
                                                                                                                                                                             En = -13.6eV
                                                                                                                                                                                               8000
```

. any photon w. envery equivalent to 2 = 3647A (is 1 < 3647 A photons - con way n= 2 level 1 ~ 3.7×10 m ~ 3700A [3643A] 3643 mm of less

Appedo prooxim X sf smcreases suddenly at 3647 A. -> sudden drop in radiative fews due to -> BALMER-SUMP

: from Boltzmann equation Size of Jump - 17 9 0 - sup of Balmes -> Temperature dependence (soo hos no you has set sou) state about in fust excited purp of Jemposetwo

LCX IN MACO DECREASES BALMER JUMP - 3647 Å U (MAGNITUDES) INCREAS

C-DINCANASMO

TRONGEST WHEN NEVNEN LAKINOH (

9600K II AO

SPECTAAL TYPE AO

SOURCES OF OPACITY DIFFERENT AT DIFFERENT TEMPERATURES

-MAJOR CONTRIBUTOR IN STARS COOLER THAN FO IS H- ION PHOTOLONIZATION

111 SECOND ELECTRON BOUND TO ATOM (LOOSELY) OPPOSITE FIRST ELECTRON

BINDING ENERGY = 0.754-V (13.60 FOR H ground state

ANY photon with \ < hc/2 = 6.6 × 10-27 × 3 × 10 0

can photoword (x1.6 mm)

BOUND - FREE ABSORPTION CONTRIBUTES TO CONTINUUM OPACITY IN LATER-TYPE STARS

A H- INCREASINGLY IONIZED INCREASING TEMPERATURE - A, B STARS

CONTINUUM OPACITY FROM PHOTOLONIZATION OF H ATOMS

omol FREE-FREE ABSORPTION KER

STARS: PROGRESSIVELY MORE IONIZATION OF H SO ELECTRON SCATTERING Xes + He conceans

" Xx = Xx, 66 + Xx, 6f + Xx, ff + Xes + XH! North mysothers

OPACITY ALSO DEPENDS ON DENSITY COMPOSITION, TEMPERATURE

-MOT SUST ON WAVELENGTH OF PHOTONS
BEING ABSORBED)

ROSSELAND MEAN, X, INDEPENDENT OF A OPACITY

- DEPENDS ONLY ON COMPOSITION, DENSITY TEMPER ATURE

DEFINE X = Son JBult du

- lawed weight to high value of spaish harmonic mean

expressions for Kbf, Kff, Kes, Km-No analytic expression for X66 but simple

Kpf = 4.84 × 1021 968/2 Z(1+X) P/T25 m2/kg Kpf = 3.68 × 1018 gpf (1-2)(1+X) P/T25 m2/kg X = Xb6 + Xbf + Kff + Kes + KH-

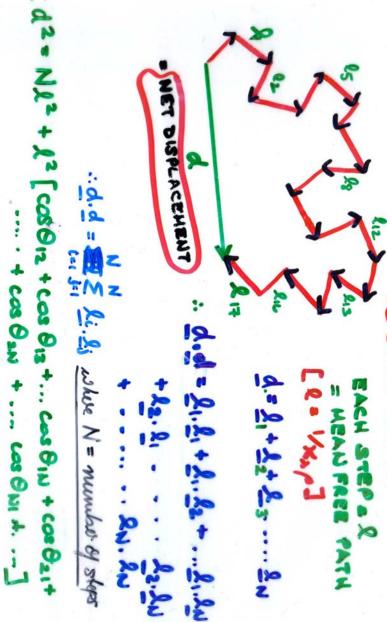
compute calculation for composition 70% H, 28% He, 28 melads Curves are denoty (kg m3) by mass

Note Xes independent of weweley. = 0.02(1+x) + all cures comments 00 7m2/kg

Log 10 (K)

X increases in inversing & p for given T steep now in completely plat with T fall-of as opacity dormusted by Kbt, Ktt = unexercine free elections from

OPACITY - MEASURE OF WHAT STOPS RADIATION FROM PROPAGATING THROUGH STELLAR ATMOSPHERE


RADIATIVE TRANSFER - HOW RADIATION PROPAGATES

EQUILIBRIUM = NO CHANGE IN TOTAL ENERGY IN A LEVEL

+ ABSORPTION & EMISSION BALANCE

-> PHETONS DO NOT STREAM OUT - ABSORPTION & EMISSION REDIRECT, REDISTRIBUTE ENERSY

IN EFFECT, PHOTONS DIFFUSE UPWARDS IN ATMOSPHERE

FOR VERY LARGE N,

F COSO TEAMS -

: d = 2NN

RNNA プログン アカロア マタイエ - NUMBER OF GIRTS

TO MOVE TOXA, NEED TOO HORE STEPS ENERGY TRANSPORT IS NOT I. O. DISPLACEMENT OF A NUMBER OF STEPS

RECALL! OPTICAL DEPTH, ,

PFFICIPAT!

" NUMBER OF PHOTON MEIAN FREE PATHS TROM POINT OF MEASUREHENT WITHIN STAR TO STELLAR SURFACE

7,= 5,ds/2 = d/2

" AVERAGE NUMBER OF STEPS TO REACH SU

N= 7,2 assuming 7, >>1

FOR 721, PHOTON CAN ESCAPE

WE WILL SHOW THAT STELLAR PHOTOSPHERE,
LAYER FROM WHICH NISIBLE LIGHT COMES IS AT Z, = 2/3 LIGHT COMES,

WITHIN STAR, ANY PHOTON MOVES IN NEARLY RANDOH DIRECTION DUE TO MULTIPLE SCATTERINGS

BUT: TEMPERATURE DECREASES OUTWARD

"RADIATION PRESSURE DECREASES

ALL Prod = 41 (B, (T)) = 4014

GRADIENT IN Prod -> NET MOTION OF PHOTONS
TO SURFACE

NET FLOW OF RADIATIVE FLUX

slow upward diffusion of random moving photono

BEAM OR RAY

- DIRECTION OF MOTION SHARED AT PARTICULAR INSTANT BY PHOTONS BEING ABSORBED, "BEAK" SCATTERED INTO AND OUT OF
- " CONVENIENT FICTION"

NET FLOW OF RADIATION THROUGH ATMOSPHERE FROM FRUATION OF RADIATIVE TRANSFER

(NOTE: NOT SPECIFIC PATHS OF INDIVIDUAL PHOTONS) SUPPOSE SOME EMISSION PROCESS INCREASES TX

ENTENSITY) OF LIGHT AS IT MOVES THROUGH GAS:

SUMILARLY, FOR PROACE AGGORATION MI GONO E dIx jyods

SPYTOXX-STY

Nº MAISSION CORFFICIENT

MURRAY BHITTED BETWEEN X & X+dx

dIx = - XxpIxdS+ jxpds - NORRABE

शुम् * エメーノングメ (ot Ju/xw)

where JXIKE = Sx, & SOURCE FUNCTION

ratio of enuescen coefft to also soption cosp photonoum beam on removed, replaced

x dis . Ix - Sx

TRANSFER FOUNTION

U Ix same unito - wattom = 2st -1

SES XX ds = Ix-S

FOR NO VARIATION IN INTENSITY, IX = S IF INDS, IN DECREASES WITH DISTANCE 1 I, TENDS TO S, = photons in beautifules IXS IX INCREASES tend to become

FOR BLACK- BODY RADIATION: SUPPOSE "box not flow of energy - all processes balance of optically thick goo at temperature T, no . dIx = 0 so that Ix = S, = B, (sma 8-8)

" SY - BY FOR THERMODYNAMIC EQUILIBRIUM

FOR REAL STAR?

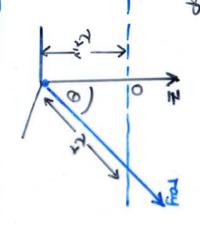
1:0 AND PHOTONS CONFINED TO LIMITED VOLUME STERS TO REACH SURFACE AT LEVEL WHERE ZX >> 1, PHOTON NEEDS ZX2 PHOTON, mean free posts. I << H, scale height AT TEMP CONSTANT

= LTE

in the source of the radiation of 1/k, results is SX - BX on LTE with Zx >>1

In tends to Sh

TO UNDERSTAND CONDITIONS IN STELLAR ATHORHERE NAME TO KNOW WHAT DEPOTE UPECTRAL CINE FORMED I'R NEED SOME MEASURE OF POSITION


REWRITE TRANSFER EQUATION:

$$-\frac{1}{2}\frac{dI_{\lambda}}{dS} = I_{\lambda} - S_{\lambda} \Rightarrow \frac{dI_{\lambda}}{dC_{\lambda}} = I_{\lambda} - S_{\lambda}$$

ASSUME ATMOSPHERIC LAYER IS THIN WITH NEGLIBLE CURVATURE

z-axis vertical, z-0 at top SPLANE PARALLEL ATMOSPHERE

Vertical optical depth = ptaking optical depth where Zx, v = 0 Tx, v(z) = JKxp dz hewelly to x=0

2 > 7, v (=) since posts donge

and ?. シベン Ħ Zx, v secs

Tx, or undependent of direction of light ray 0800

and :: cos 0 d Z = I 1-5x

" cos 0 dIx . f Ixdx - f Sxdx = I - S spacely Xx = X - ROSSELAND HEAN
(NOEPENDENTOF X)

TRANSFER EQUATION FOR GRAY ATMOSPHERE (i.s. opacymoupendy)

FOR PLANE - PARALLEL GRAY ATHOSPHERE

MULTIPLY (I) BY COS O

for spherical coords:
$$\frac{dP_{pol}}{dt} = -\frac{X_{f}}{C}F_{pol}$$
 (3)

- NET RADIATIVE FLUX OUTWARDS DRIVEN BY CHANGING (DECREASING) Prod (Nathathoù

FOR A STELLAR ATMOSPHEREN IN EQUILIBRIUM 1 - NO NET CHANGE IN ENERGY OF RADIATION FIELD PROCESSES (ABS", EMISSION) BALANCE

" Frad CONSTANT AT EVERY LEVEL = FSURFACE = OTEH

and thus officed = 0 so that < I> s

Integrating died - I Fred = Prad = Fred to constant

- radiation pressur as function & Tv

CAN WE DERIVE TEMPERATURE STRUCTURE OF ATMOSPHERE?

ADOPT EDDINGTON APPROXIMATION

VERY SIMPLY I GOT (E) = IM (-2); [I, (0,0) = B (T, coso)] \$ AT TOP OF AT MOSPHERE IN=0, Tv=0 > (I)= = (Iout + Iin) = Iour at ==0, To=0

< Frad> = TI [Iout - In] = TI Iour at 2=0, Tw=0

earlie dynations inducate how these expressions

< Prod> = 21 (I out + Iii) = 41 (I)

WE HAVE Prod - - Frod Tv +C

41 (I) - Fred TV+C

At top of atmospher, Z=0, Z=0, (I)= I won and Frad = TIIouT

- (I) = Fmd/211

4/11 Fred = 0 + C => C = 2 Fred 3c 211

Substitute for C: " 41 (1) = Fred To + 2 Fred

" 4T(I> = Frad (Tv + 2/3)

force F = 074/4, (I) = 3074/(Tv+43)

IN LTE S=B = 074/11 and S= (I)

" 0T" = 30TeH (7+2/3)

The = 3/4 Teff (Ty + 2/3) = with vertical optical

depth in plans possible gray atmospher

FOR Ty=213, T4= 3 Tell (413) = Tell

" STELLAR SURFACE (PHOTOSPHERE) AT Ty=43 NOT AT 7=0

PHOTOSPHERE & AVERAGE DEPTH FROM WHICH PHOTONS ORIGINATE

ie we are reing down to optical duth 2/3