AY 20

Fall 2010

Class 1 Organization & Introduction

Reading: Carroll & Ostley, Chapter 6

Ay 20: Basic Astronomy & the Galaxy 219 Cahill, Mon, Wed, Fri: 2:00 to 3:00pm

Anneila Sargent 215 Cahill x6622

100 Parsons Gates x 6100

afs@caltech.edu

Office Hours: 3-4pm Mon Wed Fri (or by appointment) TA: Kunal Mooley

265 Cahill x6813

kunal@astro.caltech.edu
Office hours TBD

http://www.astro.caltech.edu/~kunal/ay20

<u>Textbook</u>

"An Introduction to Modern Astrophysics"

Bradley Carroll & Dale Ostlie

2nd Edition 2007 ISBN 978-0805304022 (Pearson/Addison Wesley/Benjamin Cummings)

Grading

Homework (5-6 sets)	35%
Lab project	15%
Midterm exam	20%
(closed book, open personal notes)	
Final exam	30%
(closed book, open personal notes)	

Instructor's handouts may not be used in either midterm or final

Homework

- · Will be handed out on Wednesdays (TBD)
- · Due on following Wednesday before 5 pm
- Extensions of up to 24 hrs may be requested from Anneila or Kunal.
- Longer extensions must be requested from Anneila
- Late homework will not be graded unless an extension has been approved

Homework Collaboration Policy

- · Try every homework problem by yourself first.
- · You may consult books or published papers.
- You may discuss a problem with others or with the TA to reach a better understanding.
- You may NOT show each other graphs, or computer programs.
- You may NOT use solutions from previous years' assignments or the work of other students.

Ay 20 ≡ "basics of astronomy"

TOPICS	
organization, telescopes	
celestial sphere,coordinates	
celestial mechanics,	
Kepler's laws, stellar distances	
Planck function, astronomical measurements	
line radiation, classification of stellar spectra	
stellar spectra & Hertzsprung Russell Diagram	
binary stars, stellar masses, extra solar planets (intro)	
basic optics, telescopes	
stellar atmospheres, radiation field, stellar opacity,	
stellar atmospheres: radiative transfer, line profiles	
stellar interiors, hydrostatic equilibrium	
energy sources, energy generation/transport,	
Sun	
Interstellar medium, extinction	
star formation	
pre-main sequence evolution	
stellar evolution, post-main sequence	
remnants of stars	
the solar system	
Our Galaxy, structure and kinematics	

Orion nebula

Crab Nebula

Vega

Astronomy - an observational science

Astronomical information gathered from across electromagnetic spectrum

- detectors operate over wide wavelength range
 X-ray < 1nm to radio > 1m
- ultraviolet optical ~ 100nm 600 nm
 ~ 1000 Å 6000 Å

$$1 \text{ Ångstrom} = 10^{-8} \text{ cm}$$

- infrared ~ 10000 nm (1 μ m) ~ 400 μ m
- sub-millimeter/millimeter ~ 350 µm 1/3 mm
- radio ~ 10 cm -10 m

Principles from Optical Telescopes refractors (lenses) reflectors (mirrors)

Refraction

Reflection

$$\theta_1 = \theta_2$$
Incident and reflected rays in same plane as normal

- ray bent at interface between two transparent media
- bending a function of n_{λ} , index of refraction of each medium at wavelength λ

$$n_{\lambda} \equiv c/v_{\lambda}$$
c =velocity of light in vacuum
 v_{λ} = velocity of light in medium

Snell's law of refraction
$$n_{1\lambda} \sin \theta_1 = n_{2\lambda} \sin \theta_2$$

Converging and Diverging Lenses

diverging

rays of light come to focus at distance f from lens center

f = focal length (image distance of an object at infinity)

converging: f +ve diverging: f -ve

lensmaker's formula

$$1/f_{\lambda} = (n_{\lambda} - 1)(1/R_1 + 1/R_2)$$

R1, R2 radii of curvature

convex: +ve

concave: -ve

assumes both surfaces spheroidal

Mirrors

FIGURE 6.5 (a) A converging mirror, f > 0. (b) A diverging mirror, f < 0

- Most modern telescopes use converging systems as the primary mirrors
- For a spheroidal mirror, lensmaker's formula leads to focal length, f = R/2
- $1/f_{\lambda} = (n_{\lambda}-1)(1/R_1 + 1/R_2) = 2/R = 1/f$ (independent of λ)

Plate scale

- astronomical sources often extended
- : images also extended along focal plane
- = plane passing through focal point, perpendicular to optical axis of system

 $tan\theta = y/f \approx \theta$, if field of view of telescope is small

$$\therefore$$
 y = f θ

∴ plate scale, $d\theta/dy = 1/f$

relates angular separation on sky
(of individual objects or parts of
extended sources) to linear
separation in image plane

increased "resolution" requires lens with longer focal length