
Test Driven Development: Unit-testing for the
development of a Correlator-Beamformer

Mpho ‘mm-Poh’ Mphego
Test & Verification Engineer

SKA SA

mmphego@ska.ac.za

mailto:mmphego@ska.ac.za

Overview

• What is this TDD, you speak of?

• Unit-Testing is not TDD!

• To TDD or not to TDD?

• What is being tested?

• Types of tests done?

• How we do these tests using TDD?

• Future work and improvements.

• Demo, if time allows.

What is this TDD, you speak of?

• Test-driven development (TDD) is a software development process that relies

on the repetition of a very short development cycle: Requirements are turned

into very specific test cases, then the software is improved to pass the new

tests, only. [1]

[1] Test Driven Development [https://en.wikipedia.org/wiki/Test-driven_development]

"Developer testing is an important step towards accountability. It gives developers a way to demonstrate the

quality of the software they produce." - Kent Beck

Simplified Version

Test driven development in a nutshell (Red-Green-Refactor):

1. Decide what the test will do

2. Write the test code

3. Watch the test fail

4. Write test logic as simple as possible

5. Pass the test

6. Refractor, removing any duplicates

7. Go back to 1

Unit Testing is not TDD

Q: Is test driven development a form of unit testing?

A: TDD is a design methodology, it creates unit tests and forces you to make certain

design decisions, usually improving the overall design

Typical Example of a unit test method

TDD = unit + test

1. Write the test first, run and ensure it fails (a Test)

2. Then write the logic, to pass the test (a Unit)

***The tests drive our development.

To TDD or not TDD?

You can do unit testing without doing test driven development. However you
can't do test driven development without using unit tests.

When you do traditional unit testing, you write test after you wrote your code.

Test driven development approach is to write unit test before writing code.

Most interesting advantages of TDD (IMHO) comparing to simple Unit Testing:

Code is fully tested code upfront. It's painless testing.

It forces you to design your classes correctly.

It also forces you to keep it simple stupid.

The cycle of Red-Green-Refactor is the absolute procrastination killer!

http://en.wikipedia.org/wiki/KISS_principle

Caveat

● The first time you do this it will take you a little
bit longer before it’ll be faster.

​
“One of the best programming skills you can have is knowing when to walk away for a while.” – Oscar
Godson

What are we testing?

CBF (Core) Maintained packages CBF dependencies

● Private Repos

● Public Repos

Types of tests we do?

How is TDD applied to CBF Testing?

● Python Nose used as a unit-testing framework which makes testing easier.

● Nosetests extended with report generation plugin.

● Python decorators are associated with each tests, these are used in the generated report.

● Decorator specifies which verification requirements are covered in each test.

CBF Requirements as Req. Spec.CBF Verification Requirements

Test name Instrument test is ran
Actual test method

Non-hardcoded testing params

Automated unit-testing with Jenkins CI

Manual to Automation:

• CBF Array Release 1(As mentioned by Francois) was

qualified by means of using manual testing.

• CBF unofficial Array Release 1.5 which consisted of 16

Antenna 4k/32k correlator-beamformer was qualified

with the use of Jenkins CI and reports are

automagically generated

• Jenkins CI runs from a Docker container, Integrates

with Git

*Jenkins CI: https://jenkins.io/

* Docker: https://www.docker.com/

https://jenkins.io/
https://www.docker.com/

What is Jenkins CI?

• Jenkins is a continuous integration and delivery application that builds and tests projects making it

easier for developers to integrate changes to the project.

• Benefits: Team members integrate work frequently. Each integration is verified by an automated build to

detect errors as quickly as possible.

• It is an auto-test platform which helps users to track where and when bugs are introduced.

*Jenkins CI: https://jenkins.io/

https://jenkins.io/

The feeling when you find a Bug!

Top replies by *CBF Developers when Bugs are found!

● AndrewM: Well that’s weird, it has never
done that before!

● JasonM: It must be a hardware problem!
● PaulP: You must probably have the

wrong version of software installed!
● PaulP: Well, It works on my machine!
● JasonM: Did you install packages on

correct path(s)!
● JasonM: There must be something funky

happening with your data or maybe the
switch is sending the data to wrong IP’s!

● AndrewM: I know it works, but I haven’t
tested it!

● JasonM: Well, at least data is flowing!

Automated Qualification Report

● Auto-generated using Python
pocketsphinx library

● The requirement specs/req
information is retrieved from an
exported CORE xml model

● Pass/Fail statuses retrieved from
*nosekatreport plugin for Python-
Nose which creates a json file
with all the relevant information

*https://github.com/ska-sa/nosekatreport

https://github.com/ska-sa/nosekatreport

Future work and Improvements!

● Memory optimizations
● Git Hooks (automagically initiating a Jenkins build to run functional testing on all the

changes made to repositories.)
● Auto bug reports with Jenkins-Jira and email notifications
● Latex integration: automagically created test qualification report
● CBF System Dashboard

Memory Optimizations

● Memory usage when running 4 Antenna 4k (CBF) test due to high data rate when
retrieving correlated data.

● i.e. the higher the no. of antennas the higher the data rate vis-a-vi higher system
memory usage.

● Memory optimisations should be researched and implemented to avoid higher
system memory consumptions.

Jenkins-Jira bug report API

● Integrating Jenkins CI with Atlassian Jira (if you haven’t
used it Google is your friend)

Jenkins-Jira bug report API

● Failed Test, executes Jira bug report API

Jenkins-Jira bug report API (cont)

● Jira issues a bug report, for tracking.
https://wiki.jenkins.io/display/JENKINS/JIRA+Plugin

https://wiki.jenkins.io/display/JENKINS/JIRA+Plugin

CBF System Dashboard

https://github.com/ska-sa/CBF-System-Dashboard

● Docker based, Node-Red dashboard
● MQTT protocol is used to retrieve all relevant information, and then parses the data to dashboard.

https://github.com/ska-sa/CBF-System-Dashboard

SKA South Africa, a Business Unit of the National Research Foundation.
We are building the Square Kilometre Array radio telescope (SKA), located in South Africa and
eight other African countries, with part in Australia. The SKA will be the largest radio telescope

ever built and will produce science that changes our understanding of the universe

Contact information

Mpho Mphego
Test and Verification Engineer

Email: mmphego@ska.ac.za

www.ska.ac.
za

mailto:mmphego@ska.ac.za

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

