

SKA- Key Science Drivers: The history of the Universe

Testing General Relativity (Strong Regime, Gravitational Waves)

Cosmic Dawn
(First Stars and Galaxies)

Cradle of Life (Planets, Molecules, SETI)

Galaxy Evolution (Normal Galaxies z~2-3)

Cosmic Magnetism (Origin, Evolution)

Cosmology (Dark Energy, Large Scale Structure)

Exploration of the Unknown

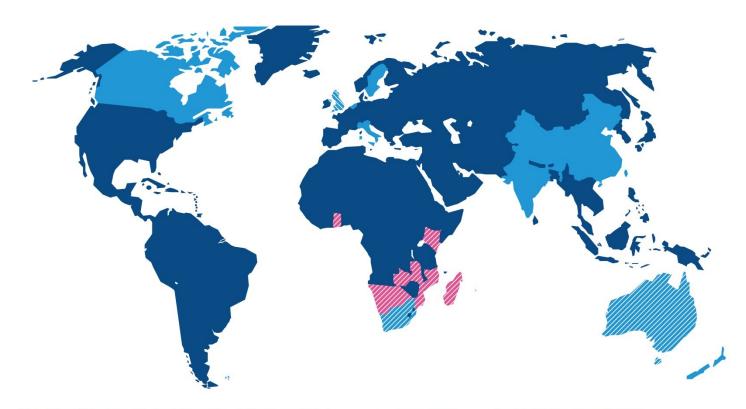

Broadest range of science of any facility, worldwide

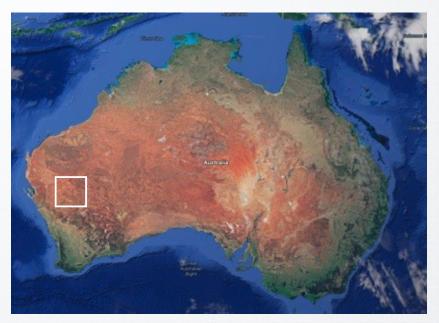
Image and text by SKA Organisat

Square Kilometre Array

Overview

- 3 sites: 2 telescopes + HQ = 1 Observatory
- Now in design Phase: ~ €200M; 600 scientists + engineers
- Phase 1
 - Construction: 2019 2024
 - Construction cost cap: €674.1M (inflation-adjusted)
 - Operations planning now underway
 - MeerKat integrated
 - Observatory Development Programme
 - SKA Regional centres (locally funded)
- Phase 2: start mid-2020s
 - Advanced Instrumentation Program to mature relevant technologies now
 - ~2000 dishes across 3500km of Southern Africa
 - Major expansion of SKA1-Low across Western Australia

- Full members
 - SKA Headquarters host country
 - SKA Phase 1 and Phase 2 host countries

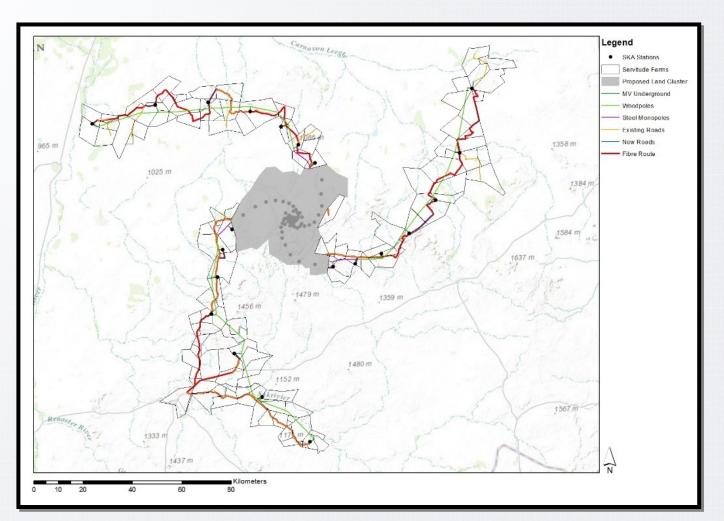


African partner countries (non-member SKA Phase 2 host countries)

This map is intended for reference only and is not meant to represent legal borders

SKA telescopes in AUS & RSA

- SKA1-LOW
- 50 350 MHz
- Phase 1: ~130,000 antennas
- across 40 50km



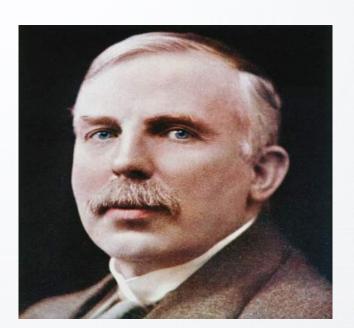
- SKA1-Mid:
- 350 MHz 24 GHz
- Phase 1: 130 15-m dishes across 120km
- Integration of 64 dish MeerKAT to complete phase 1 array

SKA Low prototype

Space for SKA

SKA Mid prototype: Foundations

SKA Mid prototype: Panel molds


Picture: CETC54

SKA Consortia

- Consortia are performing element designs
- SKAO is the central design authority
- For SKA 1:
 - Dish The physical dishes, feeds and digitisation
 - SaDT Signal and Data Transport (Included Synchronisation and Timing)
 - CSP Central Signal Processing (Correlator, Beamformers and Non-imaging processing)
 - SDP Science Data Processing
 - INFRA SA
 - INFRA AUS
 - LFAA Low Frequency Aperture Array
 - TM Telescope Manager
 - AIV Assembly, Integration and Verification
- FOR the Advanced Instrumentation Program (SKA 2):
 - MFAA
 - WBSPF
 - PAF

SKA: What is next?

- "CDR Tomorrow"
- Now preparing for the element and system Critical Design Reviews
- Starting this year and extending through 2018
- Creation of a new Inter-governmental Organisation (IGO)
- Plan is to have agreements for the IGO in place this year
- Followed by ratification in each member country
- IGO comes into force early 2019
- Construction phase begins

From Alistair
McPherson's
presentation at the SKA
Engineering Meeting
2017 (and 2016)

"Gentlemen, we have run out of money. It's time to start thinking."

— Ernest Rutherford

SKA1 construction provisional totals – Phil Diamond SKAO

Element	Estimate (M Euro incl. contingency) - Feb 2017	Estimate (M Euro incl. contingency) - Jun 2017	Change	% Change	Reason
AIV	32.8	34.3	1.6	5	Product Assurance and Admin functions increased per Cost Review
CSP	125.9	110.1	-15.8	-13	Frequency slice architecture for Mid.CBF adopted (ECP-170017 in transit)
DSH	173.7	170 0	-0.5	Λ	
INAU	96.0	£917	N/I \Box	1 + 20	06M
INSA	67.9		IVI L		
LFAA	107.9	111.7	3.8	4	Shipping costs included per Cost Review
SaDT	66.7	57.1	-9.6	-14	Updated vendor quotes; some re-use of MeerKAT timescale; reduced component costs; refined software labour costs
SDP	114.5	114.5	0.0	0	
TM	43.7	43.0	-0.6	-1	
Totals	829.0	806.4	-22.6	-3	

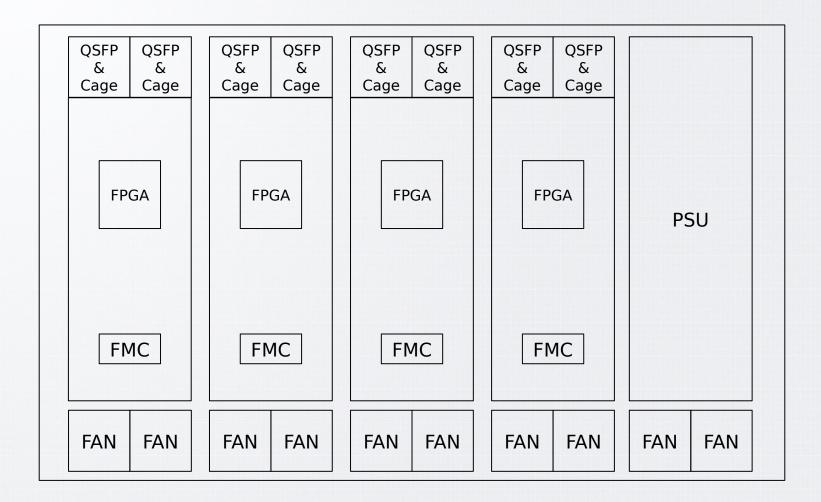
Updated CCP list (page 1/2)

WS / Origin	Description	LOW/ MID/ COMMON	Science Implication	Science Impact
5.39	INFRA_SA Renewable energy to outer dishes	MID	None	1
5.3	Maximise use of code produced during Pre-Construction	COMMON	None	1
5.38	Simplify DDBH LOW	LOW	None	1
5.38	Simplify DDBH MID	MID	None	1
5.25.2	Reduce PSS-MID: A, 750 nodes to 500 nodes	MID	Likely none, or small reduction of pulsar search parameter space.	1
5.25.2	Reduce PSS-LOW: A, 250 nodes to 167 nodes	LOW	Likely none, or small reduction of pulsar search parameter space.	1
5.35	Reduce CBF-MID: Freq. Slice variant of CSP design vs. MeerKAT-based design	MID	None	1
5.19	MID Frequency and Timing Standard: SaDT solution vs. MeerKAT-based solution	MID	None	1
5.36	MID SPF Digitisers: DSH solution vs. MeerKAT-based solution	MID	None	1
5.26/ 5.29	LOW RPF: Early Digital Beam Formation vs. Analogue Beam Formation	LOW	None	1
2	LOW Antenna: Log Periodic Design vs. Dipole Design	LOW	None of the current designs meet the L1 requirements	3
8	SDP- HPC: Deploy 200 Pflops (rather than 260 Pflops)	COMMON	Lower allowed duty cycle for HPC- intensive observations.	2
5.24.3	Reduce Bmax MID from 150 to 120 km: Case A, remove 3 dishes, but keep infra to 150km	MID	Reduction of maximum achievable resolution by 20%, although can be partially recovered with data weighting and longer integration times.	2
5.24.2	Reduce Bmax MID from 150 to 120 km: Case B, remove infra, but add dishes to core	MID	Reduction of maximum achievable resolution by 20%, although can be partially recovered with data weighting and longer integration times.	2
5.24.1	Reduce Bmax MID from 150 to 120 km: Case C, remove infra, remove dishes	MID	Reduction of maximum achievable resolution by 20%, although can be partially recovered with data weighting and longer integration times.	2
5.5.2	Reduce MID Band 5 feeds: A, from 130 to 67	MID	Placement to be determined based on full community consultation.	2
5.25.2	Reduce PSS-LOW: B, 167 nodes to 125 nodes	LOW	Likely reduction in processed PSS beam number (1.3x) or pulsar search parameter space	2
5.25.2	Reduce PSS-MID: B, 500 nodes to 375 nodes	MID	Likely reduction in processed PSS beam number (1.3x) or pulsar search parameter space	2

Exploring the Universe with the world's largest radio telescope

Updated CCP list (page 2/2)

	8	SDP- HPC: Deploy 150 Pflops (from 200 Pflops)	COMMON	Lower allowed duty cycle for HPC- intensive observations.	3	
	5.30.0	Reduce Bmax LOW to 50km: A, remove infra, add 18 stations to core	LOW	Science Risk to EoR: Bmax.	3	
	5.30.0	Reduce Bmax LOW to 50km: B, remove 18 stations	LOW	Science Risk to EoR: Bmax	3	
	5.30a	Reduce Bmax LOW to 40km: C, remove next 18 stations	LOW	Science Risk to EoR: Bmax	3	
4	8	SDP- HPC: Deploy 100 Pflops (from 150 Pflops)	COMMON	Lower allowed duty cycle for HPC-intensive observations.	4	
₽	8	SDP- HPC: Deploy 50 Pflops (from 100 Pflops)	COMMON	Lower allowed duty cycle for HPC- intensive observations.	4	
	5.31	Reduce CBF-LOW BW: A, 300 to 200 MHz	LOW	Longer observing times for continuum applications (1.5x)	4	
	5.25.2/ Deeper Savings	Reduce PSS-LOW: C, 125 nodes to 83 nodes	LOW	Likely reduction in processed PSS beam number (2x) or pulsar search parameter space	4	
Ì	5.25.2/ Deeper Savings	Reduce PSS-MID: B, 375 nodes to 250 nodes	MID	Likely reduction in processed PSS beam number (2x) or pulsar search parameter space	4	
	5.13.2	Reduce Bandwidth output of band 5 to 2.5GHz	MID	Longer Band 5 observing times for some applications (2x)	4	
	5.35	Reduce MID CBF and DSH BW: 5 to 1.4 GHz	MID	Longer observing times to achieve continuum sensitivity in Band 5 (3.6x)	4	
	5.24/ Deeper Savings	Remove 11 MID Dishes from core	MID	10% Array sensitivity loss in core	4	
	5.30/ Deeper Savings	Remove 54 LOW stations from core	LOW	10% Array sensitivity loss in core	4	
	5.24/ Deeper Savings	Remove additional 11 MID Dishes from core	MID	20% Array sensitivity loss in core	4	
	5.30/ Deeper Savings	Remove additional 54 LOW stations from core	LOW	20% Array sensitivity loss in core	4	
	5.24.2	Reduce Bmax MID from 120 to 100 km: D, remove infra, remove next 3 dishes	MID	Lose Science (Planetary disks, High resolution Star Formation)	4	
	5.5.1	Remove MID Band 1 feeds: 105 to 0	MID	Lose Science (Cosmology, Galaxy Evolution)	4	
	5.5.2	Reduce MID Band 5 feeds: B, from 67 to 0	MID	Lose Science (Planetary disks, Star Formation)	4	
	()					


"DCE" 'proposal'

- What would happen if we reused as much of MeerKAT as possible?
- Goal is to have no impact on science
- Only SKA1 Mid
- Allowed half of Euro 674 M cost cap
- Construction starts in 2019...
- ... but we only need to deploy a large scale system by 2022
- SKARAB2 could be Virtex Ultrascale+ or Stratix 10 with HBM.
- SKARAB2 is a risk mitigation for SKARAB3, which is the preferred family for SKA in ~2022 timeframe
- Increase density to 4 devices per 1U
- Power up to 130W per device, ~23kW per rack

A few key SKA CSP specifications

- Up to 5GHz instantaneous bandwidth (band 5)
- 130 15m antennas + 64 13.5m MeerKAT antennas
- Beamformers for:
 - VLBI up to 4 beams with adjustable bandwidth
 - PSS search. Up to 1500 beams at 300MHz bandwidth
 - PST timing. 16 beams at full bandwidth
- Correlation
 - 64k channels WB
 - Zoom windows (4, 8, 16, 32, 64, 128, 256 MHz), 16k
 channels

SKARAB2 Block Diagram

SKARAB2 Hardware Proposal

SKARAB vs SKARAB2

SKARAB	SKARAB2
Ethernet: 4 x 40GbE	Ethernet: 2 x 100GbE
Memory: 4GB HMC x 3	Memory: HBM
FPGA: 1 x Virtex 7	FPGA: 4 x Virtex UltraScale+
Dimensions: 1U	Dimensions: 1U
Power Consumption: 125W	Power Consumption: 684W
Cooling: Fan Air Flow	Cooling: Front to Back Fan Air Flow (TBD)

SKARAB vs SKARAB2 FPGA Specs

SKARAB Virtex 7 (XC7VX690T)

693120 Logic Cells

80 x SERDES

64 used for I/O mezzanine sites @ 10 Gbps

1 used for PCI-E to COM-E module site

1470 x 36Kb RAM Blocks (~52 Mb)

3600 DSP Slices

1927 pins

1000 single ended I/O

SKARAB 2 Virtex UltraScale (VU33P/VU35P)

962000-1907000 Logic Cells

32-64 x SERDES

@ 32.75 Gbps

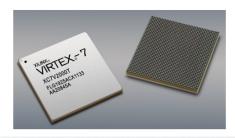
RAM Blocks (~23.6 - 47.3 Mb)

UltraRam (90-180 Mb)

HBM: 8GB

2880-5952 DSP Slices

208 - 416 single ended I/O


2-5 x 100G Ethernet

SKARAB FPGA Specs in Detail

SKARAB Compute: Virtex 7 FPGA

- 693120 Logic Cells
- 80 x SERDES
 - 64 used for I/O mezzanine sites @ 10 Gbps
 - 1 used for PCI-E to COM-E module site
- 1470 x 36Kb RAM Blocks (~52 Mb)
- 3600 DSP Slices
- 1927 pins

		XC7VX690T			
	EasyPath™ (Cost Reduction Solutions (1)	XCE7VX690T		
Lasia		108,300			
Logic		693.120			
Resources			,		
	Maxim	10,888			
Memory	Block RAM	1,470			
Resources		Total Block RAM (Kb)	52,920		
Clocking		CMTs (1 MMCM + 1 PLL)	20		
1/0 P	N	Maximum Single-Ended I/O	1,000		
I/O Resources	Maxi	mum Differential I/O Pairs	(1) XCE7VX690T es 108,300 lls 693,120 ss 866,400 ss 866,400 s) 10,888 n) 1,470 s) 52,920 L) 20 (70 1,000 ris 480 es 3,600 es 3,600 (12) — 13 3 3 OC 1 ks 1 (3) — (4) 80 es — al 1-1,-2 (5) -2L, -3		
		3,600			
		PCIe® Gen2 ⁽²⁾	_		
		PCle Gen3	3		
Integrated IP		1			
Resources	Configu	1			
	GTX Transceive	_			
	GTH Transceive	80			
	GTZ Transceive	_			
		-1, -2			
Speed Grades	CLB Flip-Flops				
	EasyPath™ Cost Reduction Solutions ⁽¹⁾ Slices Logic Cells CLB Filer-Flops S66,400 Maximum Distributed RAM (kb) 10,888 Block RAM/FIFO w/ ECC (36 Kb each) 1,470 Total Block RAM (kb) 52,920 CMTs (1 MMCM+1 PLL) 20 Maximum Differential I/O Pairs 480 DSP Slices DSP Slices PCle® Gen2 ⁽²⁾ − PCle Gen3 3 Analog Mixed Signal (AMS) / XADC 1 Configuration AES / HMAC Blocks 1 GTX Transceivers (12.5 Gb/s Max Rate) 6 GTZ Transceivers (13.1 Gb/s Max Rate) − Commercial −1,−2 Extended −1,−2 Extended −1,−2 FFG1157 / FFV1157 35 x 35 0,600 (0,20) FFG761 / FFV1761 42.5 x 42.5 0,850 (0,36) FFG1925 45 x 45 FFG1926 45 x 45 FFG1927 / FFV1927 75 x 45 FFG1928 45 x 45 FFG1928				
	Package ⁽⁶⁾	Dimensions (mm)	GTH)		
		35 x 35	0, 600 (0, 20)		
Footprint	FFG1761 / FFV1761 ⁽⁷⁾	42.5 x 42.5	0, 850 (0, 36)		
Compatible					
		45 x 45			
	FFG1158 / FFV1158 ⁽⁷⁾				
Footprint		10 11 10	0, 720 (0, 64)		
Compatible					
Factories			0, 600 (0, 80)		
Footprint					
Compatible Footprint			0 1000 (0 24)		
Compatible			0, 1000 (0, 24)		
Compatible	FLG1930	45 X 45			

SKARAB2 FPGA Specs in Detail

SKARAB 2 Virtex UltraScale (VU33P/VU35P - package compatible)

962000-1907000 Logic Cells

32-64 x SERDES

@ 32.75 Gbps

RAM Blocks (~23.6 - 47.3 Mb)

UltraRam (90-180Mb)

HBM: 8GB

2880-5952 DSP Slices

208 - 416 single ended I/O

2-5 x 100G Ethernet

		Device Name	VU3P	VU5P	VU7P	VU9P	VU11P	VU13P	VU31P	VU33P	VU35P	VU37P	
	System Logic Cells (K)		862	1,314	1,724	2,586	2,835	3,780	962	962	1,907	2,852	
	, (CLB Flip-Flops (K)	788	1,201	1,576	2,364	2,592	3,456	879	879	1,743	2,607	
		CLB LUTs (K)	394	601	788	1,182	1,296	1,728	440	440	872	1,304	
	Max. Distributed RAM (Mb)		12.0	18.3	24.1	36.1	36.2	48.3	12.5	12.5	24.6	36.7	
	Total Block RAM (Mb)		25.3	36.0	50.6	75.9	70.9	94.5	23.6	23.6	47.3	70.9	
	UltraRAM (Mb)		90.0	132.2	180.0	270.0	270.0	360.0	90.0	90.0	180.0	270.0	
	HBM DRAM (GB)		-	-	-	-	-	-	4	8	8	8	<u> </u>
	HB	M AXI Interfaces	-	-	-	-	-	-	32	32	32	32	3
	Clock M	gmt Tiles (CMTs)	10	20	20	30	12	16	4	4	8	12	4
		DSP Slices	2,280	3,474	4,560	6,840	9,216	12,288	2,880	2,880	5,952	9,024	Virtex®
	Peak I	NT8 DSP (TOP/s)	7.1	10.8	14.2	21.3	28.7	38.3	8.9	8.9	18.6	28.1	(⊛
	PCle® Ger	n3 x16 / Gen4 x8	2	4	4	6	3	4	4	4	5	6	
	CCIX Ports ⁽¹⁾		-	-	-	-	-	-	4	4	4	4	≒
	150G Interlaken		3	4	6	9	6	8	0	0	2	4	UltraScale+™
	100G Ethernet w/ RS-FEC		3	4	6	9	9	12	2	2	5	8	a
	Max. Single-Ended HP I/Os		520	832	832	832	624	832	208	208	416	624	S
	GTY 32.75G	b/s Transceivers	40	80	80	120	96	128	32	32	64	96	S
		Extended ⁽²⁾	-1 -2 -2L -3	_									
		Industrial	-1 -2	-1 -2	-1 -2	-1 -2	-1 -2	-1 -2	-	-	-	-	Ŵ
	Footprint ^(3,4)	Dimensions (mm)					HP I/O, GTY	/ 32.75Gb/s					+
er	C1517	40x40	520, 40										3
ntifi	F1924 ⁽⁵⁾	45x45					624, 64						
m i ide	A2104	47.5x47.5		832, 52	832, 52	832, 52							Ti-
20n prin		52.5x52.5 ⁽⁶⁾		700 76	700 76	700 76	570.76	832, 52					ŏ
vith	B2104	47.5x47.5 52.5x52.5 ⁽⁶⁾		702, 76	702, 76	702, 76	572, 76	702 76					FPGAs
ne)		47.5x47.5		416, 80	416, 80	416, 104	416, 96	702, 76					
oatil h sa	C2104	52.5x52.5 ⁽⁶⁾		410, 80	410, 80	416, 104	410, 90	416, 104					V
with		47.5x47.5				676, 76	572, 76	410, 104					
int c	D2104	52.5x52.5 ⁽⁶⁾				070,70	372, 70	676, 76					
Footprint compatible with 20nm UltraScale Devices with same footprint identifier	A2577	52.5x52.5				448, 120	448, 96	448, 128					
Fo	H1924	45x45				, ,	,	,	208, 32				
raSc	H2104	47.5x47.5							,	208, 32	416, 64		
รั	H2892	55x55								,	416, 64	624, 96	

SKA South Africa, a Business Unit of the National Research Foundation, is supervising South Africa's involvement in the SKA on behalf of the Department of Science & Technology.

Thanks