

### RFI MITIGATING RECEIVER BACK-END FOR RADIOMETERS

Phaneendra Bikkina<sup>1</sup>, Qingjun Fan<sup>2</sup>, Wenlan Wu<sup>1</sup>, Jinghong Chen<sup>2</sup> and Esko Mikkola<sup>1</sup>

<sup>1</sup> Alphacore, Inc., <sup>2</sup> University of Houston

2017 CASPER Workshop Pasadena, California

Alphacore Inc. | www.alphacoreinc.com | Copyright © 2017 PROPRIETARY | SBIR Data Rights

1

### Acknowledgements

 The authors would like to thank Jonathon Kocz of Cal Tech, Sidharth Misra & Robert Jarnot of JPL and Andrew Levy of Alphacore Inc for their help during this work.



### Introduction and Background

- The work presented here is part of a joint effort between Alphacore, Inc, University of Houston and NASA Jet Propulsion Lab (JPL) to develop a lowpower, radiation-hard RFI mitigating receiver back-end for radiometers that can process over a gigahertz of signal bandwidth.
- The results of this work also enable applications that require low-power receivers that incorporate ADCs and back-end filters, without the need for RFI mitigation, e.g., spectrometers used in MKID arrays.
- Other similar systems that we are aware of are 'Mars Spec' and Single-chip Planetary Low-power ASIC Spectrometer with High-resolution (SPLASH) ASIC.
  - 'Mars Spec' is a DSP-only solution, comprised of an off-chip 1.5 GS/s ADC with 4096 channels while consuming 2.7W.
  - SPLASH has an 3GS/s ADC, 8000-channel FFT consuming 950mW.



### **RFI Mitigating Receiver Back-End**



- > 3.2GS/s 12-bit ADC (analog front end)
- ADC sampling rate can be adjusted with clock tuning using clock generator block
- 1024 sub-band low power polyphase filters
- Kurtosis for RFI detection and mitigation
- on-chip memory for calibration/characterization of the ADC
- Total power of ADC 35.7mW for >9bits ENOB and 12.7mW for >8bits ENOB

#### 10-bit Time-Interleaved SAR (Successive Approximation Register) ADC



- 4-way time interleaved topology with highbandwidth (5GHz input bandwidth) front-end sampling circuit
- Each SAR ADC channel uses a dual-DAC topology relaxing DAC settling time constraint for first few bits
- Over-ranging for calibration
- Does not require high frequency clock for sampling
- Gain mismatch is calibrated digitally using channels match expression for m<sup>th</sup> channel as Gm = sqrt((Σy<sup>2</sup>m[n])/K) where K is the total number of channels and n varies from 1 to K
- Time skew calibration is mitigated by employing special skew control and pulse width control circuits
- Modified to 8–way interleaved due to layout performance degradation of sampling rate
- Higher sampling rate in each channel also requires high power consuming reference drivers (due to kickback noise on references)
- 8-channel 10-bit 2-3 GS/s tapeout scheduled for November 2017

# Parasitic extracted simulation results of ADC



- Single channel post layout simulations shows 9.36 bits ENOB
- 8-channel time-interleaved has 8.1bits ENOB (program goal)
- Higher ENOB with channel randomization
- ENOB limited by reference voltage noise
- Power α reference voltage accuracy (reference buffer driver will have lower impedance)



## Polyphase Filter Bank's (PFB) Single core 8-tap filter with 10-bit input lines and 10-bit coefficients (1/2)



- 1024 sub-band PFB with maximum data throughput of 3GS/s and total area 0.0097mm<sup>2</sup>
- Asynchronous single-core filter that works at very high data rate
- 11-bit switching bus (S[0:10]) synchronous to ADC's sampling clock
- Output is de-multiplexed to 2048 points (for 1024 point FFT)



## Polyphase Filter Bank's (PFB) Single core 8-tap filter with 10-bit input lines and 10-bit coefficients (2/2)



#### Kurtosis Variation Over Introduction of Sinusoidal Tones



Kurtosis Calculation : 
$$K = \frac{\sum (X-\mu)^4}{(\sum (X-\mu)^2)^2}$$
 can be can be also

evaluated as

$$(K + \delta) * (\sum (X - \mu)^2)^2 > \sum (X - \mu)^4 > (K - \delta) * (\sum (X - \mu)^2)^2$$

K = Kurtosis Value

X = input data  $\mu$  = mean of N input (X) samples  $\delta$ = estimation error

**Kurtosis Variation** 3.2 2.8 2.6 Kurtosis 2.2 2 1.8 1.6 1.4 1000 2000 5000 6000 3000 4000 7000 Points

Kurtosis estimator block simulation showing an RFI detection during the sampling pints 3000 to 5000. A single tone sinusoidal input signal was fed to the system during this time. No other input was provided.



### ADC + PFB multitone response



- ADC Multitone response has noise floor below 70dB
- Sub-bands' FFT plots merged

### **Radiation Effect Mitigation**

- 100 krad(Si) of total ionizing dose (TID) is the requirement of most NASA missions (Jupiter-bound missions require up to 3Mrads)
- The selected 28nm CMOS process has been tested to have inherent tolerance to 500krad(Si)
- The silicon insulator (SOI) process provides complete immunity to singleevent latchup, the main concern for CMOS electronics in space
- The process also provides 10X 20X lower single event upset (SEU) rate
- Long term on-chip bit storage devices (configuration and calibration coefficient memories) will be hardened with layout techniques (DICE latches, increased capacitance and resistance)



### Summary

- We present the first low-power RFI mitigating receiver backend ASIC that pushes the state of the art significantly in terms of SWAP.
- It is designed in a 28nm process and it will be rad-hard to 500krad(Si) of total ionizing dose (TID) and immune to single event latchup (SEL).
- The ASIC includes an on-chip analog to digital converter (ADC) and a RFI detecting/mitigating digital signal processing (DSP) block.
- The ASIC is capable of processing signals with bandwidths exceeding 1.0GHz. The ADC has a 10-bit, 2 GS/s radiation-hard successive approximation register (SAR) architecture. The DSP block includes a 1024-channel polyphase filter bank (PFB), a Fast Fourier Transform (FFT) blocks and Kurtosis detection & accumulation block.
- The total ADC power is 35.7mW (with >9 bits ENOB). The DSP will have a high degree of
  programmability that includes the selection/bypassing of the Kurtosis estimation, selection of
  the number of channels, selection of the decimation factor and selection of time spans for
  the accumulation of statistical averages.
- The goal is to increase the sampling rate to 5GS/s and add more programmability to number of channels. We will tapeout a test chip November 2017 and use these results for the future design.



### Some Other Alphacore Programs...

#### ...that may be of interest to you



#### **High Speed Digitizer for Remote Sensing**



Analog, Mixed Signal & RF Electronics



#### NASA SBIR Phase I & PHASE II

<u>NASA need</u>: A high-resolution, low-power, rad-hard analog-to-digital converter (ADC) suitable for NASA's remote sensing applications.

- 4b, 25GS/s, 25GHz, 400mW flash ADC with 12.5Gb/s I/Os
- I/O interface is optimized for interfacing to an FPGA
- Designed in a 28nm CMOS SOI technology
- Targets a range of NASA's remote sensing instruments, scalable for use in balloons, aircraft and satellites.
- Radiation hard up to 500krad(Si) and SEL immune

Status: Completion by Oct 2017







| Specification                               | Alphacore's ADC              |
|---------------------------------------------|------------------------------|
| Architecture                                | 2-channel interpolated flash |
| Interconnect                                | Chip-on-Board                |
| Sampling rate /<br>Input frequency          | 25GSPS/25GHz                 |
| Power [ADC core /<br>entire chip with I/Os] | 400mW                        |
| Radiation hardness                          | 500krad                      |

#### High Sample Rate A/D Converter



Analog, Mixed Signal & RF Electronics



#### DARPA SBIR Phase I & PHASE II

<u>DARPA need</u>: Low-power, high-peed ADC for phased array SoCs

- Used in phased array technologies
- End goal is a 7b, 40GS/s, 20GHz, 500mW interpolated flash ADC
- Designed in a 28nm CMOS SOI technology
- Design will be radiation hard up to 500krad(Si) and SEL immune
- First test chip containing the analog front-end and calibration circuit has been taped out in September 2016
- Upgraded version of the NASA ADC



| Specification      | Alphacore's ADC              |
|--------------------|------------------------------|
| Architecture       | 2-channel interpolated flash |
| Interconnect       | Flip-chip                    |
| Resolution         | 7 bits                       |
| Sampling rate /    | 40 GSPS /                    |
| Input frequency    | 20 GHz                       |
| I/O type           | 12.5 Gbps CML,               |
|                    | XOR/PRBS encoded             |
| Radiation hardness | 500krad                      |

Status: Completion by May 2019



#### **Analog to Information Processing**



Analog, Mixed Signal & RF Electronics



#### Navy SBIR Phase I

<u>Navy need</u>: An analog to information processing approach to bypass analog-to-digital conversion that is capable of lower power consumption, smaller circuit size and does not require upfront digitization.

- Unique analog IC design that transforms RF inputs directly to useful information without off-chip digitization
- The systems forms an ADC with impressive specs:
  - ENOB > 10bits
  - Linearity > 12bits
  - Bandwidth > 10GHz
  - Core Design Power < 150mW
- Incorporates bank of filters and on-chip digital signal processing circuitry
- Applications include radar, wireless communication and optical transport networks





#### Status: Completed Mar 2017

### And just for fun, check out...

#### http://nist-takingmeasure.blogs.govdelivery.com/weird-signals-listening-eclipse/



