

SKARAB

AGILE 40 GBE NETWORKED FPGA COMPUTE/INSTRUMENT PLATFORM

Designed and Manufactured by Peralex Electronics
Distributed worldwide by Cyntony

SKARAB IS READY FOR YOUR RESEARCH TODAY

- Board Support Package (BSP) on Github
 - SKA-SA software uses open source Apache Version 2 license
- CASPER Listserv development support, led by SKA-SA
- Over 100 SKARAB systems delivered to SKA-SA by Peralex
- Mature, fully qualified and shipping
 - FPGA board, power supply, cooling in 1U enclosure
 - 4 x 40 GbE QSFP+ mezzanine card
 - 4 GB Hybrid Memory Cube mezzanine card
 - New 3 GSPS 14-bit ADC mezzanine card
- Cyntony distributes worldwide

+ HOW WILL YOU USE SKARAB? AS A...

SPECTROMETER

BEAMFORMER

RADAR

NEW GIZMO?

SKARAB

Extreme FPGA computing
Real-time reconfiguration
Massively networkable
Wideband A/D conversion
Highly power efficient

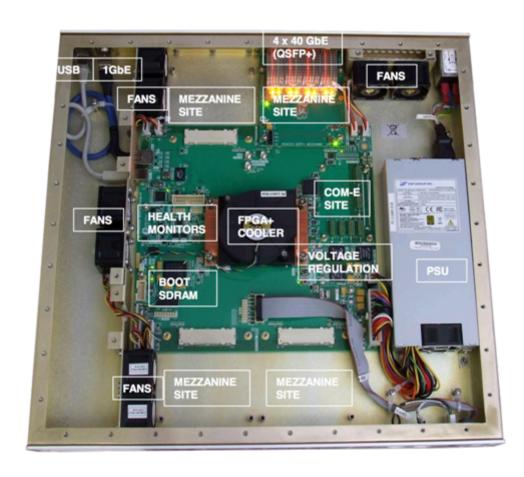
Concept by SKA-SA
Design and Manufacture by
Peralex Electronics

DESIGN AND VERIFICATION

- Peralex won RSA tender deliver 300 SKARABs for MeerKAT
- Extensive signal integrity analysis and verification
 - 10.3125 Gbps over 7m on 128 links.
- CFD and real-world thermal analyses
- MTBF analysis fed back into design to maximize reliability
 - 110,000 hours at 44 degC
- Thorough environmental design verification tests
 - EMC/RFI, temperature, shock and vibration

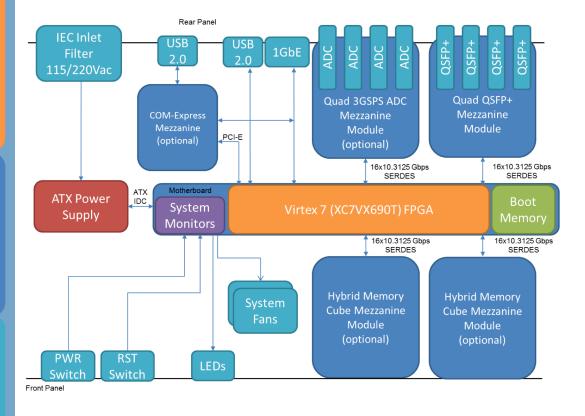
MANUFACTURING AND TEST

- Peralex assembles units and performs automated final tests
 - Internal and supply chain quality management
 - Optimized assembly fixtures and test harnesses
 - Thermal stress screening to eliminate infant mortality
- Key components get supplier tests
 - PCB delamination stress testing
 - X-ray/AOI inspection of all PCB assemblies

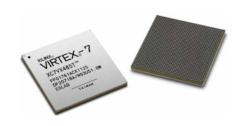


SQUARE KILOMETER ARRAY RECONFIGURABLE APPLICATION* BOARD

Under the hood


*SKARAB is <u>NOT</u> application specific

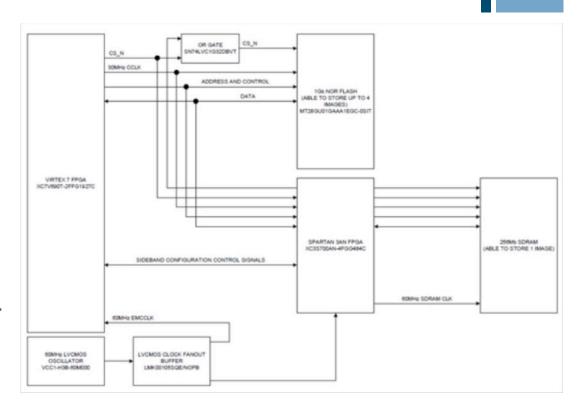
SKARAB SPECS


Xilinx Virtex 7 FPGA
XC7VX690T-2-FFG1927
693,120 logic cells
3600 DSP slices
54 Mb RAM
80 x SERDES channels

1.28 TBPS total throughput
4 x 40 GbE QSFP+
Quad 3 GSPS ADCs optional
Hybrid Memory Cube optional
COM-Express mezzanine optional
GBE management interface
Remote monitoring/shutdown
Energy efficient (45 W floor)
1U rackable form factor
5 to 40 deg C operating temp range

SKARAB FPGA: VIRTEX

- 693120 Logic Cells
- 80 x SERDES
 - 64 for mezzanine I/O
 - 1 for COM-Express site
- 1470 x 36Kb RAM Blocks (~52 Mb)
- 3600 DSP Slices
- 1927 pins



		Part Number	XC7VX690T						
	EasyPath™ (XCE7VX690T							
Logic		Slices	108,300						
_		Logic Cells	693,120						
Resources		866,400							
Mamani	Maxim	num Distributed RAM (Kb)	10,888						
Memory	Block RAM,	/FIFO w/ ECC (36 Kb each)	1,470						
Resources		52,920							
Clocking		CMTs (1 MMCM + 1 PLL)	20						
I/O Resources	N	1,000							
I/O Resources	Maxi	480							
		DSP Slices	3,600						
		PCle® Gen2 ⁽²⁾	_						
		PCIe Gen3	3						
Integrated IP	Analog N	1							
Resources	Configu	1							
	GTX Transceive	_							
	GTH Transceive	80							
	GTZ Transceive	_							
		Commercial Extended ⁽⁵⁾	-1, -2						
Speed Grades		-2L, -3							
		Industrial	-1, -2						
	Package ⁽⁶⁾	Dimensions (mm)	GTH)						
	FFG1157 / FFV1157 ⁽⁷⁾	35 x 35	0, 600 (0, 20)						
Footprint	FFG1761 / FFV1761 ⁽⁷⁾	42.5 x 42.5	0, 850 (0, 36)						
Compatible	FHG1761	45 x 45							
	FLG1925	45 x 45							
Footoolos	FFG1158 / FFV1158 ⁽⁷⁾	35 x 35	0, 350 (0, 48)						
Footprint	FFG1926	45 x 45	0, 720 (0, 64)						
Compatible	FLG1926	45 x 45	0 (00 (0 (0)						
Footprint	FFG1927 / FFV1927 ⁽⁷⁾ FFG1928	45 x 45 45 x 45	0, 600 (0, 80)						
Compatible	FFG1928 FLG1928								
Footprint	FFG1930	45 x 45 45 x 45	0, 1000 (0, 24)						
Compatible	FLG1930	45 x 45	0, 1000 (0, 24)						
Companie	. 202000	15 / 15	15						

+ FPGA (RE)CONFIGURATION

- On power-up, FPGA boots from NV flash
- Can then be rebooted over 1 GbE using SDRAM-based highspeed boot mode
- Boots in < 1 second for rapid reconfiguration

FOUR MEZZANINE SITES

- 400 pin MEG-array connectorCapable of 28 Gbps
- 16 x ~10 Gbps SERDES
- 1-Wire Interface (config PROM)
- I2C management interface
- JTAG test interface
- High speed clocks
- Power (12V, 5V, 3.3V)

						Pi Pi	NOT LAN			PMYSS LAWES PMYSS LAWES								PAYON LAMES					PHYS LANET DAWN							-	POST LAN	er.		P	PORT 1.44	62			
40	39	38	37	36	36	36	33	32	31	30	29	28	27	26	26	24	23	22	21	20	10	18	17	96	15	14	13	10	11	10	9		2	6	5	4	3	2	1
A VCC	6/60	3.79	100	GND	GND	GNO	GND	GND	GND	GRO	GND	GND	GNO	GND	GND	GND	GND	GNO	GND	GND	GND	GRO	GND	GND	GNO	GND	GND	GND	GND	GND	GND	GND	GND	GNO	GWD	GND	Ten	503.	50A
B VCC	GNO	1.00	- 10	GND	RDIP	GNO	RUP	GND	FOUP	GWD	RHP	GND	ROOP	GND	KHP	GND	RNP	GND	RICP	GND	FOUP	GWD	RHP	GND	ROOP	GND	EUP	GND	RNP	GND	RUP	GND	RDIP	GND	RICP	GND	20A		THIS
C VCC	GNO	1.79	200	GNO	ROOM	GND	RICH	GND	RODI	GND	ROOM	GND	ROOM	GND	RODE	GND	RODI	GND	RICH	GND	ROBI	GNO	RXXX	GND	ROOM	GND	ROW	GND	ROW	GND	RXX	GND	FOOM	GNO	RHOW	GND	AO1		100
B VCC	GNO	1277		GND	CND	CND	GND	CND	CND	GIO	CND	CND	CND	CND	GND	CND	CND	CND	GND	CND	CND	GIO	CND	CAD	GNO	CND	GND	GND	CND	CND	GND	CND	CND	GND	GIO	GND	ADI	189	THE
E VCC	GND	1257	200	GND	OPT	GNO	OPT	GND	OPT	GND	OPT	GND	OPT	GND	OPT	GND	OPT	GNO	OPT	GND	OPT	GND	OPT	GND	OPT	GND	OPT	GND	OPT	GNO	OPT	GND	OPT	GND	OPT	GND	Ma	DOT_N	Fa_E
r vcc	GNO	129	100	GND	OPT	CND	OPT	GND	OPT	GIND	OPT	CND	OPT	CND	OPT	GND	OPT	CND	OPT	CND	OPT	GIND	OPT	CND	OPT	CND	OPT	GND	OPT	CND	OPT	CND	OPT	GND	OPT	GND	CND	GIID	GND P
G 50	GND	1297	200	GND	GND	GNO	GND	GND	CND	GND	GND	GND	CND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND.	GND	GND	GND	GND	GND	GND	GND	GNO	GWD	GND	DOM	DOM	GND
Pi Vanna	680	1.79		GNO	TRP	CNO	TXP	GND	THE	GNO	THP	GND	TKP	CND	TOUP	GND	DO	CND	TXP	GND	TRP	G80	THP	GND	TRP	CND	TOUR	GND	TRP	CNO	TXIP	GND	THP	GNO	TXXP	GND	GND	GND	GNO
Ween.	GNO	1297	100	GND	THN	GNO	TXN	GND	TEUN	GWD	THE	GND	TION	GND	TXN	GND	THN	GND	TXN	GND	1308	GWD	THRE	GND	TION	GND	TORN	GND	THE	GNO	TXN	GND	TION	GNO	TXX	GND	CKIM	CKIP	GNO
* VCCH	GIO	1.00	100	GND	GND	CNO	GND	GND	CND	GND	GND	GND	CND	GND	GND	GND	CND	CND	GND	GND	CND	G80	GND	CND	GNO	CND	GND	GND	GND	CND	GND	GND	CND	GNO	GND	GND	CND	GIED	GNO
40	25	38	37	-26	38	34	33	32	31	30	29	29	27	25	8	24	23	22	21	29	19	18	17	96	15	14	13	12	- 11	10	9		7	- 6	5	4	- 3	2	1
					WYZZ_LAI	6.1		n	1972_LAI	62	PROS_LANCE PROSS_						H25_LA	62		-	MIS_LAN	69	PRYST, LANCE					PHTTI_LARCE				-	RTT, LAN	62					

⁺ 4 x 40 GbE QSFP+ **MEZZANINE CARD**

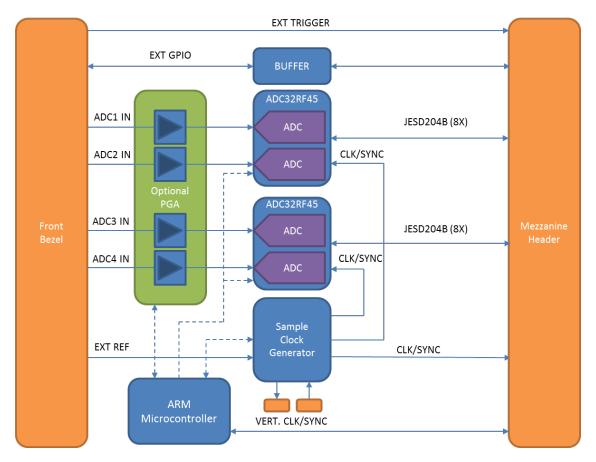
- 4 x QSFP+ interfaces
 - 16 x 10 Gbps SERDES
 - Copper, AOC, SR & LR fiber
- 32-bit ARM μC (mgnt & boot)
- Configuration PROM
- Clock generation
- Thermal sensor
- Design/Manufacture by Peralex

HYBRID MEMORY CUBE MEZZANINE CARD

- 4 GB Micron HMC chip
- 10 Gbps x 16 SERDES to FPGA
- Relative to DDR3/4:
 - Higher bandwidth
 - More energy efficient
 - More parallel
- Relative to QDR SRAM & Bandwidth Engine
 - Larger capacity
- Designed by SKA-SA
 - Manufactured by Peralex

+ ADC32RF45X2 MEZZANINE

- 2/4 3 GSPS 14-bit ADC Channels
 - 600 MHz BW
 - 22 W power consumption at 3 GSPS
 - optional PGA
- On-board digital down converters

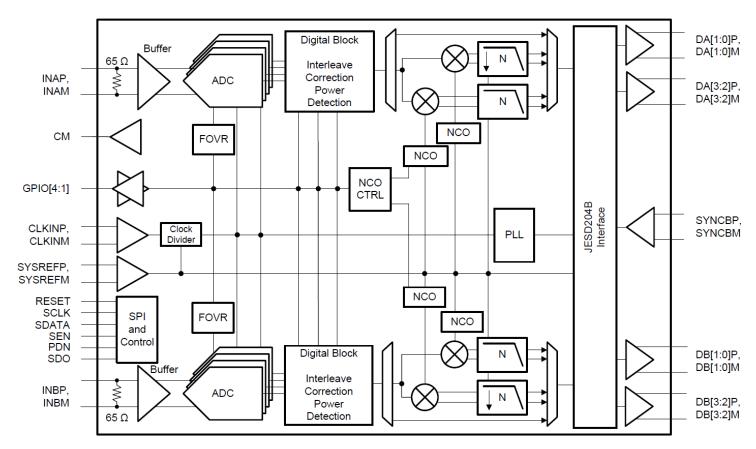

 - Two per ADC & dual band modeThree independent NCOs/DDC*
- High perf. 3 GHz sample clock generator
 - Phase synchronous DAQ across channels/boards
- Dedicated sub-system management μP
- JESD204B interface to FPGA
- Design/Manufacture by Peralex

+ ADC32RF45X2 BLOCK **DIAGRAM**

+ ADC MEZZANINE CONFIGURATION OPTIONS:

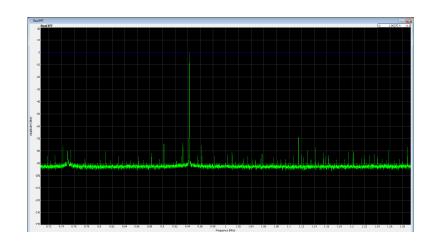
- Two ADC chip variants, one or two chips per mezzanine
 - TI ADC32RF45 Full 1.5 GHz Nyquist bandwidth using DDC bypass
 - TI ADC32RF80 DDC not by-passable, max BW of 600 MHz
 - lower priced
- Programmable Gain Amplifier (PGA) vs balun-coupled input
 - PGA gain range: ~ -6 to +15 dBm
 - PGA lowers required full scale drive strength (at the expense of NF)
 - Balun coupling recommended when operating at higher analog input frequencies (e.g. 2.0 GHz)

TI ADC23RF45 CHIP SPECS


- □ Dual-Channel, 14-Bit, 3.0-GSPS ADC
 - □ Input Full-Scale: 1.35 VPP
 - □ RF Input Supports Up to 4.0 GHz
 - On-chip 50 Ohm Input Termination
- On-chip Digital Down-Converters:
 - Up to 4 DDCs (Dual-Band Mode)
 - Up to 3 Independent NCOs per DDC
- On-chip Dither
- Aperture Jitter: 90 fsec
- Noise Floor: –155 dBFS/Hz
- □ Channel Isolation: 95 dB at Fin = 1.8 GHz
- Programmable On-Chip Power Detectors
 - Alarm Pins for AGC Support
- On-chip Over-voltage Protection Clamp

- □ JESD204B Interface
 - 4 Lanes Per Channel at 12.5 Gbps
- Support for Multi-Chip Synchronization
- □ Spectral Performance (Fin = 900 MHz, -2 dBFS)
 - □ SNR: 60.9 dBFS
 - □ SFDR: 67 dBc HD2, HD3
 - SFDR: 77 dBc Worst Spur
- □ Spectral Performance (Fin = 1.78 GHz, –2 dBFS)
 - □ SNR: 58.8 dBFS
 - □ SFDR: 66 dBc HD2, HD3
 - □ SFDR: 75 dBc Worst Spur

⁺TI ADC32RF45 DUAL ADC **BLOCK DIAGRAM**



Copyright © 2016, Texas Instruments Incorporated

+ SKARAB ADC32RF45X2

Test Case 1:

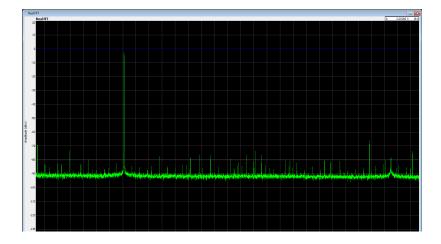
Input Frequency: 942.5 MHz Input amplitude: -10 dBFS Sample rate: 3.0 GSPS Full Scale: 9.375 dBm DDC: Decimate-by-4

FFT: 16384 Average: 5 PGA: none

Result <<

Single-tone spurious: -71.725 dBc IMD3: 76.435 dBc @ -8dBFS FFT Noise Level: -94.125 dBm

Test Case 2:


Input Frequency: 1842 MHz Input amplitude: -1 dBFS Sample rate: 3.0 GSPS Full Scale: 12.525 dBm

DDC: Decimate-by-4

FFT: 16384 Average: 5 PGA: none

Result >>

Single-tone spurious: -63.125 dBc IMD3: 68.375 dBc @ -8dBFS FFT Noise Level: -81.025 dBm

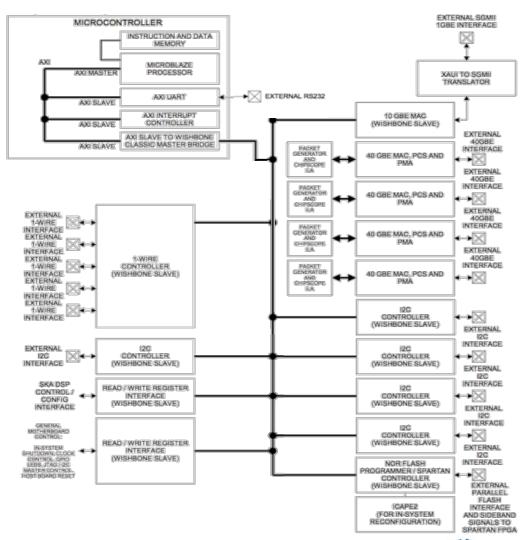
UNIT MANAGEMENT

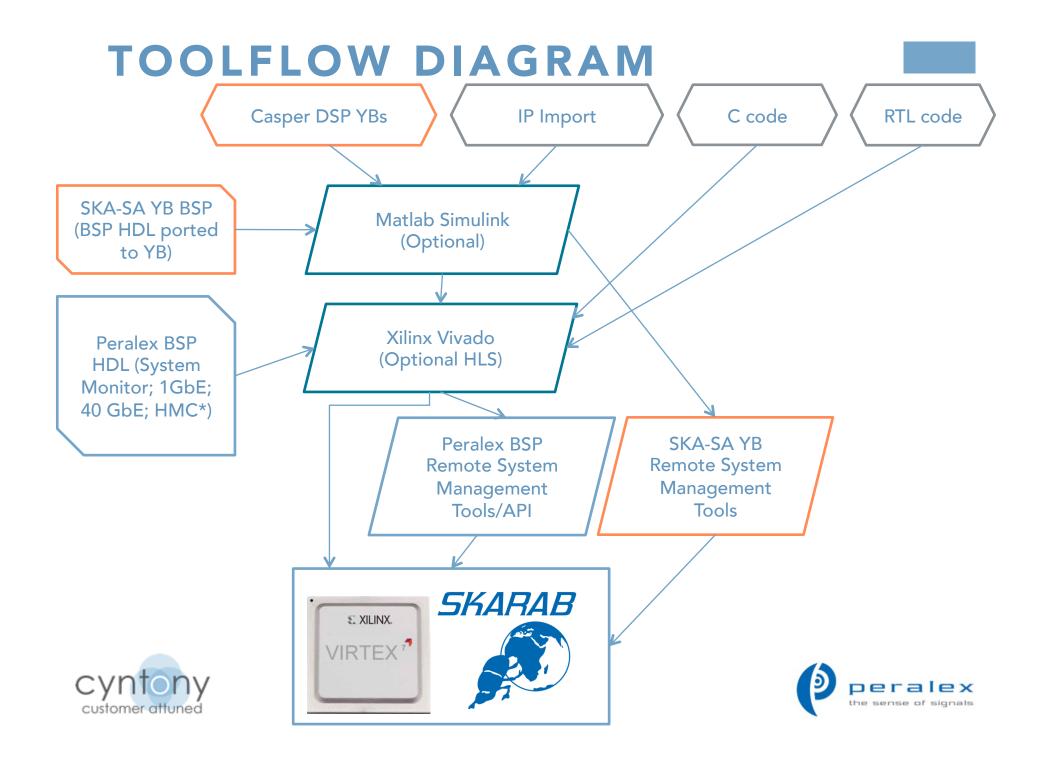
- Autonomous/programmable fan control
 - Auto shutdown on fault
- Autonomous voltage/current/fan monitoring and protection
- Fault recording
 - Always-on USB access to fault log
- USB/JTAG access to compliant devices throughout
- Serial port interface to Microblaze processor

PLATFORM MANAGEMENT

- Services on all Ethernet interfaces
 - DHCP
 - Ping
 - Health monitoring
- Network-based FPGA Configuration
 - High-speed via 1 GbE or 40 GbE interface (< 1 second)</p>
- Board Support Package provides the code

+ SOFTWARE SUPPORT


- Includes open-source Board Support Package (BSP)
 - HDL code for Xilinx Vivado suite (customer supplied)
 - FPGA Firmware for 1 GbE MAC, 40 GbE MAC & PHY, HMC, ADC
 - Microblaze soft-processor, Wishbone peripheral bus and 1-Wire
 - Fan control, air speed/thermal/voltage/current monitoring
- Includes Network Management
 - Windows/Linux C++ reference code and executables to manage unit(s) via a network-attached PC
- Support for open-source Yellow Blocks and JASPER code via CASPER listsery


BSP BLOCK DIAGRAM

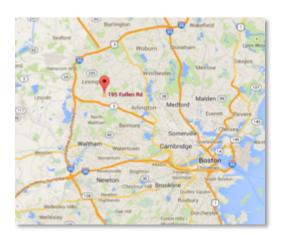
- Microblaze soft μC
- Wishbone bus/SDRAM
- 10/40 GbE PHY, MAC
- I2C, Register R/W
- FLASH controller
- ICAPE2 configuration

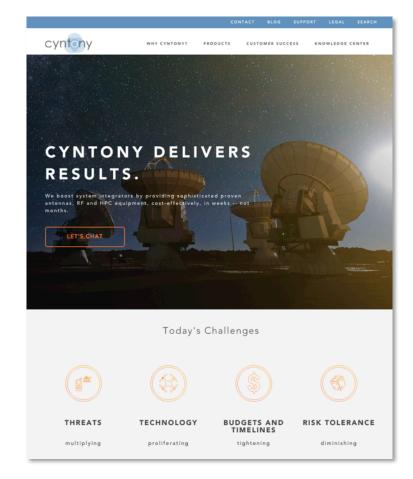
+ ABOUT PERALEX

- Founded 1987, located near Capetown, South Africa
- Pioneer in high-end DSP and SDR
- Designer and manufacturer for sophisticated customers:
 - South African National Space Agency, SKA-SA (MeerKAT), CapeRay
 - GEW Technologies, L-3 Communications, Cassidian
- High Performance Products
 - Wideband radio receivers, FPGA extreme computing
 - ADC PCBAs, DSP PCBAs
 - Associated firmware and software
- Applications Expertise
 - Spectrum Monitoring, Direction Finding, Signal Analysis

SKARAB IS READY FOR YOUR RESEARCH PROPOSALS NOW

- Mature, fully qualified, in production and shipping
- Over 100 SKARAB systems delivered to SKA-SA for MeerKAT
- CASPER Listserv development support, actively led by SKA-SA
- Board Support Package (BSP) on Github
- Come see the ADC Mezzanine in action in the demo room





+ CONTACT INFORMATION

Cyntony is the premier worldwide distributor for Peralex

- David A Moschella 617-407-0753 dmoschella@cyntony.com
- Cyntony Corporation 195 Follen Road Lexington, MA 02421

cyntony.com

